Finite groups with planar subgroup lattices

被引:0
|
作者
Joseph P. Bohanon
Les Reid
机构
[1] Washington University,Department of Mathematics
[2] Missouri State University,Department of Mathematics
来源
关键词
Graph; Subgroup graph; Planar; Lattice-planar; Nonabelian group;
D O I
暂无
中图分类号
学科分类号
摘要
It is natural to ask when a group has a planar Hasse lattice or more generally when its subgroup graph is planar. In this paper, we completely answer this question for finite groups. We analyze abelian groups, p-groups, solvable groups, and nonsolvable groups in turn. We find seven infinite families (four depending on two parameters, one on three, two on four), and three “sporadic” groups. In particular, we show that no nonabelian group whose order has three distinct prime factors can be planar.
引用
收藏
页码:207 / 223
页数:16
相关论文
共 50 条
  • [41] ON DEDEKIND LAW IN SUBGROUP LATTICES OF TOPOLOGICAL-GROUPS
    MUKHIN, YN
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1987, 31 (06): : 493 - 495
  • [42] Seminormal and subnormal subgroup lattices for transitive permutation groups
    Praeger, CE
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 80 : 45 - 63
  • [43] Abelian groups determined by subgroup lattices of direct powers
    Grigore Călugăreanu
    [J]. Archiv der Mathematik, 2006, 86 : 97 - 100
  • [44] Factor and normal subgroup theorems for lattices in products of groups
    Bader, U
    Shalom, Y
    [J]. INVENTIONES MATHEMATICAE, 2006, 163 (02) : 415 - 454
  • [45] Factor and normal subgroup theorems for lattices in products of groups
    Uri Bader
    Yehuda Shalom
    [J]. Inventiones mathematicae, 2006, 163 : 415 - 454
  • [46] VARIETIES OF GROUPS AND NORMAL-SUBGROUP LATTICES - A SURVEY
    BURNS, RG
    OATESWILLIAMS, S
    [J]. ALGEBRA UNIVERSALIS, 1994, 32 (01) : 145 - 152
  • [47] Finite groups and subgroup-permutability
    Bianchi, M
    Mauri, AGB
    Verardi, L
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 : 251 - 268
  • [48] Subgroup commutativity degrees of finite groups
    Tarnauceanu, Marius
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (09) : 2508 - 2520
  • [49] On the generalized σ-Fitting subgroup of finite groups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2019, 141 : 19 - 36
  • [50] On subgroup functors of finite soluble groups
    BALLESTER-BOLINCHES Adolfo
    COSME-LL′OPEZ Enric
    KAMORNIKOV Sergey Fedorovich
    [J]. Science China Mathematics, 2017, 60 (03) : 439 - 448