Estimation of a likelihood ratio ordered family of distributions

被引:0
|
作者
Alexandre Mösching
Lutz Dümbgen
机构
[1] University of Bern,Department of Mathematics and Statistics
[2] F. Hoffmann-La Roche Ltd,Nonclinical Biostatistics
来源
Statistics and Computing | 2024年 / 34卷
关键词
Empirical likelihood; Likelihood ratio order; Order constraint; Quasi–Newton method; Stochastic order; Total positivity; 62G05; 62G08; 62H12;
D O I
暂无
中图分类号
学科分类号
摘要
Consider bivariate observations (X1,Y1),…,(Xn,Yn)∈R×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_1,Y_1), \ldots , (X_n,Y_n) \in {\mathbb {R}}\times {\mathbb {R}}$$\end{document} with unknown conditional distributions Qx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_x$$\end{document} of Y, given that X=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = x$$\end{document}. The goal is to estimate these distributions under the sole assumption that Qx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_x$$\end{document} is isotonic in x with respect to likelihood ratio order. If the observations are identically distributed, a related goal is to estimate the joint distribution L(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X,Y)$$\end{document} under the sole assumption that it is totally positive of order two. An algorithm is developed which estimates the unknown family of distributions (Qx)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Q_x)_x$$\end{document} via empirical likelihood. The benefit of the stronger regularization imposed by likelihood ratio order over the usual stochastic order is evaluated in terms of estimation and predictive performances on simulated as well as real data.
引用
收藏
相关论文
共 50 条
  • [31] Estimation of ordered means of two Poisson distributions
    Chang, Yuan-Tsung
    Shinozaki, Nobuo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (11) : 1993 - 2003
  • [32] BAYES THEOREM AND THE ESTIMATION OF THE LIKELIHOOD RATIO - REPLY
    KELLER, H
    GESSNER, U
    CLINICAL CHEMISTRY, 1982, 28 (05) : 1251 - 1251
  • [33] LIKELIHOOD RATIO GRADIENT ESTIMATION FOR STOCHASTIC RECURSIONS
    GLYNN, PW
    LECUYER, P
    ADVANCES IN APPLIED PROBABILITY, 1995, 27 (04) : 1019 - 1053
  • [34] LIKELIHOOD RATIO DENSITY ESTIMATION FOR SIMULATION MODELS
    Puchhammer, Florian
    L'Ecuyer, Pierre
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 109 - 120
  • [35] Nonparametric estimation of the likelihood ratio and divergence functionals
    Nguyen, XuanLong
    Wainwright, Martin J.
    Jordan, Michael I.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2016 - 2020
  • [36] Fuzzy Confidence Interval Estimation by Likelihood Ratio
    Berkachy, Redina
    Donze, Laurent
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 150 - 157
  • [37] Direct Estimation of Likelihood Ratio for the Analysis of Context
    Kawakami, Kento
    Kikuchi, Masato
    Yoshida, Mitsuo
    Umemura, Kyoji
    2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), 2018, : 1 - 6
  • [39] Likelihood-Free Inference by Ratio Estimation
    Thomas, Owen
    Dutta, Ritabrata
    Corander, Jukka
    Kaski, Samuel
    Gutmann, Michael U.
    BAYESIAN ANALYSIS, 2022, 17 (01): : 1 - 31
  • [40] Maximum Likelihood Estimators for Ordered Scale Parameters of Two Weibull Distributions
    Srivastava, Tanuja
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2005, 3 (D05): : 25 - 36