On Action-Angle Variables¶for the Second Poisson Bracket of KdV

被引:0
|
作者
T. Kappeler
M. Makarov
机构
[1] Institut für Mathematik,
[2] Universität Zürich,undefined
[3] Winterthurerstrasse 190,undefined
[4] 8057 Zürich,undefined
[5] Switzerland. E-mail: tk@math.unizh.ch,undefined
来源
关键词
Sobolev Space; Poisson Bracket;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that on the Sobolev spaces HN(S1) (N≥ 0), each leaf of the foliation, induced by the second Poisson bracket of KdV, admits global action-angle variables. The actions with respect to the first bracket raise to the actions with respect to the second bracket. The angles for the first bracket are, at the same time, angles for the second bracket.
引用
收藏
页码:651 / 677
页数:26
相关论文
共 50 条
  • [21] Action-angle variables and novel superintegrable systems
    Hakobyan, T.
    Lechtenfeld, O.
    Nersessian, A.
    Saghatelian, A.
    Yeghikyan, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 577 - 582
  • [22] Quantum Ring Models and Action-Angle Variables
    Bellucci, Stefano
    Nersessian, Armen
    Saghatelian, Armen
    Yeghikyan, Vahagn
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (04) : 769 - 775
  • [23] Action-angle variables for dihedral systems on the circle
    Lechtenfeld, Olaf
    Nersessian, Armen
    Yeghikyan, Vahagn
    PHYSICS LETTERS A, 2010, 374 (46) : 4647 - 4652
  • [24] ACTION-ANGLE VARIABLES IN QUANTUM-MECHANICS
    AUGUSTIN, SD
    RABITZ, H
    JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (12): : 4956 - 4968
  • [25] A Conceptual Approach to the Problem of Action-Angle Variables
    Nguyen Tien Zung
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) : 789 - 833
  • [26] DYNAMICS OF BOSE SYSTEMS IN ACTION-ANGLE VARIABLES
    RUGGERI, GJ
    PHYSICA, 1971, 56 (01): : 121 - &
  • [27] On the Poisson structure and action-angle variables for the complex modified Korteweg-de Vries equation
    Yin, Zhe-Yong
    Tian, Shou-Fu
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [28] Action-angle Coordinates for Integrable Systems on Poisson Manifolds
    Laurent-Gengoux, Camille
    Miranda, Eva
    Vanhaecke, Pol
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (08) : 1839 - 1869
  • [29] HANNAY ANGLE STUDY OF THE FOUCAULT PENDULUM IN ACTION-ANGLE VARIABLES
    KHEIN, A
    NELSON, DF
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (02) : 170 - 174
  • [30] Classical and quantum monodromy via action-angle variables
    Hamilton, Mark D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 37 - 44