Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices, and their finite elements

被引:0
|
作者
Uğur Gönüllü
Faruk Polat
Martin R. Weber
机构
[1] İstanbul Kültür University,Department of Mathematics and Computer Science Faculty of Science and Letters
[2] Çankırı Karatekin University,Department of Mathematics, Faculty of Science
[3] Technische Universität Dresden,Fakultät Mathematik, Institut für Analysis
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Duals of Cesàro sequence spaces; Cesàro sum of Banach lattices; Atomic vector lattices; Finite elements in vector lattices; Primary 46A40; 46B42; 46B45; Secondary 47B37; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the ideals of finite elements in special vector lattices of real sequences, first in the duals of Cesàro sequence spaces cesp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ces}}_p$$\end{document} for p∈{0}∪[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \{0\}\cup [1,\infty )$$\end{document} and, second, after the Cesàro sum cesp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ces}}_{p}{(\mathfrak {X})}$$\end{document} of a sequence of Banach spaces is introduced, where p=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\infty $$\end{document} is also allowed, we characterize their duals and the finite elements in these sums if the summed up spaces are Banach lattices. This is done by means of a remarkable extension of the corresponding result for direct sums.
引用
收藏
页码:619 / 630
页数:11
相关论文
共 50 条
  • [21] Banach Spaces and Inequalities Associated with New Generalization of Cesàro Matrix
    Feyzi Başar
    Hadi Roopaei
    Acta Mathematica Scientia, 2023, 43 : 1518 - 1536
  • [22] Packing constant for Cesàro-Orlicz sequence spaces
    Zhen-Hua Ma
    Li-Ning Jiang
    Qiao-Ling Xin
    Czechoslovak Mathematical Journal, 2016, 66 : 13 - 25
  • [23] The Locally Uniform Nonsquare in Generalized Cesàro Sequence Spaces
    Narin Petrot
    Journal of Inequalities and Applications, 2008
  • [24] The Cesàro–Gamma operator and its associated sequence space
    Merve İlkhan Kara
    Hadi Roopaei
    Advances in Operator Theory, 2021, 6
  • [25] Mappings of type Orlicz and generalized Cesáro sequence space
    Nashat F Mohamed
    Awad A Bakery
    Journal of Inequalities and Applications, 2013 (1)
  • [26] On New Difference Sequence Spaces via Ces?ro Mean
    Baliarsingh, Pinakadhar
    Nanda, Sudarsan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [27] Spectral properties of generalized Cesàro operators in sequence spaces
    Angela A. Albanese
    José Bonet
    Werner J. Ricker
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [28] Constructing generalized Cesàro formulas for finite plane strains
    D. V. Georgievskii
    Journal of Applied Mechanics and Technical Physics, 2014, 55 : 494 - 498
  • [29] On finite elements in sublattices of Banach lattices
    Chen, Z. L.
    Weber, M. R.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (5-6) : 485 - 494
  • [30] A study of the q-analogue of the paranormed Cesàro sequence spaces
    Srivastava, H. M.
    Yaying, Taja
    Hazarika, Bipan
    FILOMAT, 2024, 38 (01) : 99 - 117