Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices, and their finite elements

被引:0
|
作者
Uğur Gönüllü
Faruk Polat
Martin R. Weber
机构
[1] İstanbul Kültür University,Department of Mathematics and Computer Science Faculty of Science and Letters
[2] Çankırı Karatekin University,Department of Mathematics, Faculty of Science
[3] Technische Universität Dresden,Fakultät Mathematik, Institut für Analysis
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Duals of Cesàro sequence spaces; Cesàro sum of Banach lattices; Atomic vector lattices; Finite elements in vector lattices; Primary 46A40; 46B42; 46B45; Secondary 47B37; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the ideals of finite elements in special vector lattices of real sequences, first in the duals of Cesàro sequence spaces cesp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ces}}_p$$\end{document} for p∈{0}∪[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \{0\}\cup [1,\infty )$$\end{document} and, second, after the Cesàro sum cesp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ces}}_{p}{(\mathfrak {X})}$$\end{document} of a sequence of Banach spaces is introduced, where p=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\infty $$\end{document} is also allowed, we characterize their duals and the finite elements in these sums if the summed up spaces are Banach lattices. This is done by means of a remarkable extension of the corresponding result for direct sums.
引用
收藏
页码:619 / 630
页数:11
相关论文
共 50 条
  • [1] Cesàro vector lattices and their ideals of finite elements
    Uğur Gönüllü
    Faruk Polat
    Martin R. Weber
    Positivity, 2023, 27
  • [2] Duals of Cesaro sequence vector lattices, Cesaro sums of Banach lattices, and their finite elements
    Gonullu, Ugur
    Polat, Faruk
    Weber, Martin R.
    ARCHIV DER MATHEMATIK, 2023, 120 (06) : 619 - 630
  • [3] Uo-convergence and its applications to Cesàro means in Banach lattices
    N. Gao
    V. G. Troitsky
    F. Xanthos
    Israel Journal of Mathematics, 2017, 220 : 649 - 689
  • [4] The Cesàro Operator on Duals of Smooth Sequence Spaces of Infinite Type
    Ersin Kızgut
    Mediterranean Journal of Mathematics, 2019, 16
  • [5] On finite elements in vector lattices and Banach lattices
    Chen, ZL
    Weber, MR
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) : 495 - 501
  • [6] Order spectrum of the Cesàro operator in Banach lattice sequence spaces
    José Bonet
    Werner J. Ricker
    Positivity, 2020, 24 : 593 - 603
  • [7] Cesàro bounded operators in Banach spaces
    Teresa Bermúdez
    Antonio Bonilla
    Vladimír Müller
    Alfredo Peris
    Journal d'Analyse Mathématique, 2020, 140 : 187 - 206
  • [8] The Cesàro operator on smooth sequence spaces of finite type
    Ersin Kızgut
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1747 - 1763
  • [9] Cesáro partial sums of certain analytic functions
    Rabha W Ibrahim
    Maslina Darus
    Journal of Inequalities and Applications, 2013
  • [10] Cesàro sums and algebra homomorphisms of bounded operators
    Luciano Abadias
    Carlos Lizama
    Pedro J. Miana
    M. Pilar Velasco
    Israel Journal of Mathematics, 2016, 216 : 471 - 505