Universal Deformations for a Class of Compressible Isotropic Hyperelastic Materials

被引:0
|
作者
P. Podio-Guidugli
G. Tomassetti
机构
[1] Università di Roma 'Tor Vergata Via di Tor Vergata 110,Dipartimento di Ingegneria Civile
来源
Journal of Elasticity | 1998年 / 52卷
关键词
hyperelasticity; compressible materials; universal deformations.;
D O I
暂无
中图分类号
学科分类号
摘要
Differential conditions are derived for a smooth deformation to be universal for a class of isotropic hyperelastic materials that we regard as a compressible variant (a notion we make precise) of Mooney–Rivlin’s class, and that includes the materials studied originally by Tolotti in 1943 and later, independently, by Blatz. The collection of all universal deformations for an incompressible material class is shown to contain, modulo a uniform dilation, all the universal deformations for its compressible variants. As an application of this result, by searching the known families of universal deformations for all incompressible isotropic materials, a nontrivial universal deformation for Tolotti materials is found.
引用
收藏
页码:159 / 166
页数:7
相关论文
共 50 条
  • [21] Anti-plane shear deformations in compressible transversely isotropic materials
    Tsai, HY
    Fan, XJ
    JOURNAL OF ELASTICITY, 1999, 54 (01) : 73 - 88
  • [22] Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids
    Oscar Lopez-Pamies
    Journal of Elasticity, 2009, 94 : 115 - 145
  • [23] Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids
    Lopez-Pamies, Oscar
    JOURNAL OF ELASTICITY, 2009, 94 (02) : 115 - 145
  • [24] Radially and axially symmetric motions of a class of transversely isotropic compressible hyperelastic cylindrical tubes
    Ran Wang
    Wen-zheng Zhang
    Zhen-tao Zhao
    Hong-wu Zhang
    Xue-gang Yuan
    Nonlinear Dynamics, 2017, 90 : 2481 - 2494
  • [25] Radially and axially symmetric motions of a class of transversely isotropic compressible hyperelastic cylindrical tubes
    Wang, Ran
    Zhang, Wen-zheng
    Zhao, Zhen-tao
    Zhang, Hong-wu
    Yuan, Xue-gang
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2481 - 2494
  • [26] Kearsley-type instabilities in finite deformations of transversely isotropic and incompressible hyperelastic materials
    Li, Qian
    Dillard, David A.
    Batra, Romesh C.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 196 : 171 - 178
  • [27] Accelerated nonlinear finite element method for analysis of isotropic hyperelastic materials nonlinear deformations
    Pei, Xiaohui
    Du, Jingli
    Chen, Guimin
    APPLIED MATHEMATICAL MODELLING, 2023, 120 : 513 - 534
  • [28] A parametric model for a class of foam-like isotropic hyperelastic materials
    Jemiolo, S
    Turteltaub, S
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (02): : 248 - 254
  • [29] Finite deformations of a hyperelastic, compressible and fibre reinforced tube
    Zidi, M
    Cheref, M
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2002, 21 (06) : 971 - 980
  • [30] ON THE EXISTENCE OF A CLASS OF DEFORMATIONS FOR INCOMPRESSIBLE ISOTROPIC ELASTIC-MATERIALS
    MCLEOD, JB
    RAJAGOPAL, KR
    WINEMAN, AS
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1988, 88 (02) : 91 - 101