Pairs of Short Root Subgroups in the Chevalley Group of Type G2

被引:0
|
作者
V. V. Nesterov
机构
[1] The Baltic State Technical University,
关键词
Chevalley Group; Short Root; Root Subgroup; Simultaneous Conjugation; Short Root Subgroup;
D O I
10.1023/B:JOTH.0000017893.66315.ba
中图分类号
学科分类号
摘要
The paper is devoted to a description of the pairs of unipotent short root subgroups in the Chevalley group of type G2 over a field of characteristic different from 2. Namely, the subgroups generated by a pair of short root subgroups are described, and the orbits of the Chevalley group, which acts by simultaneous conjugation on such pairs, are classified. Most of the calculations are valid for fields of characteristic 2. Bibliography: 14 titles.
引用
收藏
页码:1630 / 1641
页数:11
相关论文
共 50 条
  • [41] Explicit coproduct formulas for quantum group of the type G2
    Kharchenko, V. K.
    Vay, C.
    JOURNAL OF ALGEBRA, 2018, 500 : 103 - 116
  • [42] NSE characterization of the Chevalley group G(2)(4)
    Khangheshlaghi, Maryam Jahandideh
    Darafsheh, Mohammad Reza
    ARABIAN JOURNAL OF MATHEMATICS, 2018, 7 (01) : 21 - 26
  • [43] Group Gradings on G2
    Bahturin, Y. A.
    Tvalavadze, M. V.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) : 885 - 893
  • [44] Irreducible Carpets of Additive Subgroups of Type G2 Over a Field of Characteristic 0
    Nuzhin, Yakov N.
    Troyanskaya, Elizaveta N.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (05): : 610 - 614
  • [45] Short notifications and notes. The carbonate or nitrate group of G1-and G2 type in tetrahedron presentation.
    Reinicke, R
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1932, 84 (1/2): : 159 - 166
  • [46] Subgroups isomorphic to G2(L) in orthogonal groups
    Steinbach, A
    JOURNAL OF ALGEBRA, 1998, 205 (01) : 77 - 90
  • [47] SIMPLE SUBGROUPS OF G2(PN), P=2 OR 3
    PETROV, NT
    TCHAKERIAN, KB
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (09): : 1193 - 1196
  • [48] Spectral measures for G2, II: Finite subgroups
    Evans, David E.
    Pugh, Mathew
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (08)
  • [49] MAXIMAL-SUBGROUPS OF G2(2N)
    COOPERSTEIN, BN
    JOURNAL OF ALGEBRA, 1981, 70 (01) : 23 - 36
  • [50] GROBNER-SHIRSHOV BASIS OF QUANTUM GROUP OF TYPE G2
    Ren, Yanhua
    Obul, Abdukadir
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1510 - 1518