Litter Detection from Digital Images Using Deep Learning

被引:0
|
作者
Liu J. [1 ]
Pan C. [1 ]
Yan W.Q. [2 ]
机构
[1] China Jiliang University, Hangzhou
[2] Auckland University of Technology, Auckland
关键词
Attention module; FPN; Litter detection; Object detection;
D O I
10.1007/s42979-022-01568-1
中图分类号
学科分类号
摘要
In order to achieve automatically litter detection in residential area, machine vision has been applied to monitor environment of surveillance. Based on our observations and comparative analysis of the current algorithms, we propose an improved object detection method based on Faster R-CNN algorithm and achieve more than 98% accuracy of litter detection in surveillance. Through our observations, most of litters are small objects, we apply feature pyramid network to Faster R-CNN and optimize it by merging different layers by using multiply operate. Besides, we replace cross-entropy loss function with focal loss function to solve the problem of anchor imbalance by using region proposal network (RPN) and offer attention module through RPN to feedback the whole network. We collected more than 8000 labeled images from our surveillance videos for model training. Our experiments show that the improved Faster R-CNN achieves a satisfied performance in real scene. © 2022, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
下载
收藏
相关论文
共 50 条
  • [21] Detection and Classification of Hysteroscopic Images Using Deep Learning
    Raimondo, Diego
    Raffone, Antonio
    Salucci, Paolo
    Raimondo, Ivano
    Capobianco, Giampiero
    Galatolo, Federico Andrea
    Cimino, Mario Giovanni Cosimo Antonio
    Travaglino, Antonio
    Maletta, Manuela
    Ferla, Stefano
    Virgilio, Agnese
    Neola, Daniele
    Casadio, Paolo
    Seracchioli, Renato
    CANCERS, 2024, 16 (07)
  • [22] AVALANCHE DETECTION IN SAR IMAGES USING DEEP LEARNING
    Waldeland, Anders U.
    Reksten, Jarle Hamar
    Salberg, Arnt-Borre
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2386 - 2389
  • [23] DETECTION OF MASSES IN MAMMOGRAPHIC IMAGES USING DEEP LEARNING
    Wang, Y.
    Yin, M. M.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2017, 121 : 38 - 38
  • [24] Stain Normalization in Digital Pathology Images Using Deep Learning
    Janowczyk, Andrew
    Basavanhally, Ajay
    Madabhushi, Anant
    MODERN PATHOLOGY, 2016, 29 : 395A - 395A
  • [25] Stain Normalization in Digital Pathology Images Using Deep Learning
    Janowczyk, Andrew
    Basavanhally, Ajay
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2016, 96 : 395A - 395A
  • [26] Line-based deep learning method for tree branch detection from digital images
    Silva, Rodrigo
    Marcato, Jose, Jr.
    Almeida, Laisa
    Goncalves, Diogo
    Zamboni, Pedro
    Fernandes, Vanessa
    Silva, Jonathan
    Matsubara, Edson
    Batista, Edson
    Ma, Lingfei
    Li, Jonathan
    Goncalves, Wesley
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 110
  • [27] A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks
    Mahmud, Md Ishtyaq
    Mamun, Muntasir
    Abdelgawad, Ahmed
    ALGORITHMS, 2023, 16 (04)
  • [28] Lung and Colon Cancer Detection from CT Images Using Deep Learning
    Akinyemi J.D.
    Akinola A.A.
    Adekunle O.O.
    Adetiloye T.O.
    Dansu E.J.
    Machine Graphics and Vision, 2023, 32 (01): : 85 - 97
  • [29] Body Part Detection from Neonatal Thermal Images Using Deep Learning
    Beppu, Fumika
    Yoshikawa, Hiroki
    Uchiyama, Akira
    Higashino, Teruo
    Hamada, Keisuke
    Hirakawa, Eiji
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, 2022, 419 : 438 - 450
  • [30] Automatic Detection of Oil Spills from SAR Images Using Deep Learning
    Patel, Krishna
    Bhatt, Chintan
    Corchado, Juan M.
    AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 : 54 - 64