The Riemann hypothesis and tachyonic off-shell string scattering amplitudes

被引:0
|
作者
Carlos Castro Perelman
机构
[1] Ronin Institute,Center for Theoretical Studies of Physical Systems
[2] Clark Atlanta University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The study of the 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{4}$$\end{document}-tachyon off-shell string scattering amplitude A4(s,t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A_4 (s, t, u) $$\end{document}, based on Witten’s open string field theory, reveals the existence of poles in the s-channel and associated to a continuum of complex “spins” J. The latter J belong to the Regge trajectories in the t, u channels which are defined by -J(t)=-1-12t=β(t)=12+iλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - J (t) = - 1 - { 1\over 2 } t = \beta (t)= { 1\over 2 } + i \lambda $$\end{document}; -J(u)=-1-12u=γ(u)=12-iλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - J (u) = - 1 - { 1\over 2 } u = \gamma (u) = { 1\over 2 } - i \lambda $$\end{document}, with λ=real\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda = real$$\end{document}. These values of β(t),γ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta ( t ), \gamma (u) $$\end{document} given by 12±iλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ 1\over 2 } \pm i \lambda $$\end{document}, respectively, coincide precisely with the location of the critical line of nontrivial Riemann zeta zeros ζ(zn=12±iλn)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \zeta (z_n = { 1\over 2 } \pm i \lambda _n) = 0$$\end{document}. It is argued that despite assigning angular momentum (spin) values J to the off-shell mass values of the external off-shell tachyons along their Regge trajectories is not physically meaningful, their net zero-spin value J(k1)+J(k2)=J(k3)+J(k4)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J ( k_1 ) + J (k_2) = J ( k_3 ) + J ( k_4 ) = 0$$\end{document} is physically meaningful because the on-shell tachyon exchanged in the s-channel has a physically well defined zero-spin. We proceed to prove that if there were nontrivial zeta zeros (violating the Riemann Hypothesis) outside the critical line Realz=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Real~ z = 1/2 $$\end{document} (but inside the critical strip) these putative zeros don′t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ don't$$\end{document} correspond to any poles of the 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{4}$$\end{document}-tachyon off-shell string scattering amplitude A4(s,t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A_4 (s, t, u) $$\end{document}. We finalize with some concluding remarks on the zeros of sinh(z) given by z=0+i2πn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ z = 0 + i 2 \pi n$$\end{document}, continuous spins, non-commutative geometry and other relevant topics.
引用
收藏
相关论文
共 50 条
  • [21] SEWING RELATIONS AND DUALITY FOR BRST OFF-SHELL STRING TADPOLE AMPLITUDES
    ORDONEZ, CR
    REY, SJ
    RUBIN, MA
    ZUCCHINI, R
    [J]. PHYSICAL REVIEW D, 1989, 40 (06): : 1987 - 1992
  • [22] Off-shell amplitudes and Grassmannians
    Bork, L. V.
    Onishchenko, A. I.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2017, 48 (05) : 810 - 812
  • [23] Off-shell CHY amplitudes
    Lam, C. S.
    Yao, York-Peng
    [J]. NUCLEAR PHYSICS B, 2016, 907 : 678 - 694
  • [24] OFF-SHELL CLOSED STRING AMPLITUDES - TOWARDS A COMPUTATION OF THE TACHYON POTENTIAL
    BELOPOLSKY, A
    ZWIEBACH, B
    [J]. NUCLEAR PHYSICS B, 1995, 442 (03) : 494 - 532
  • [25] Off-shell scattering amplitudes in the double-logarithmic approximation
    Ermolaev, BI
    Greco, M
    Olness, F
    Troyan, SI
    [J]. PHYSICAL REVIEW D, 2005, 72 (05):
  • [26] OFF-SHELL TREE AMPLITUDES IN HIKKOS CLOSED STRING FIELD-THEORY
    UKEGAWA, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (20): : 5019 - 5026
  • [27] OFF-SHELL AMPLITUDES FROM BOSONIC OPEN STRING FIELD-THEORY
    FENG, JY
    [J]. NUCLEAR PHYSICS B, 1990, 338 (02) : 459 - 484
  • [28] Off-shell Amplitudes in Superstring Theory
    Sen, Ashoke
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (3-4): : 149 - +
  • [29] CALCULATION AND APPLICATION OF OFF-SHELL AMPLITUDES
    van Hameren, Andreas
    [J]. ACTA PHYSICA POLONICA B, 2015, 46 (11): : 2105 - 2109
  • [30] Phase of the Off-Shell Partial Amplitudes
    V. A. Petrov
    [J]. Theoretical and Mathematical Physics, 2001, 129 : 1398 - 1399