Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum

被引:0
|
作者
Mengqi Hu
Yifei Lou
Bao Wang
Ming Yan
Xiu Yang
Qiang Ye
机构
[1] Lehigh University,Department of Industrial and Systems Engineering
[2] The University of Texas at Dallas,Department of Mathematical Sciences
[3] The University of Utah,Department of Mathematics and Scientific Computing and Imaging Institute
[4] The Chinese University of Hong Kong,School of Data Science
[5] Michigan State University,Department of Computational Mathematics, Science and Engineering and Department of Mathematics
[6] University of Kentucky,Department of Mathematics
来源
关键词
Accelerated gradient momentum; Operator splitting; Fixed step size; Convergence rate; 41A25; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper applies an idea of adaptive momentum for the nonlinear conjugate gradient to accelerate optimization problems in sparse recovery. Specifically, we consider two types of minimization problems: a (single) differentiable function and the sum of a non-smooth function and a differentiable function. In the first case, we adopt a fixed step size to avoid the traditional line search and establish the convergence analysis of the proposed algorithm for a quadratic problem. This acceleration is further incorporated with an operator splitting technique to deal with the non-smooth function in the second case. We use the convex ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} and the nonconvex ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} functionals as two case studies to demonstrate the efficiency of the proposed approaches over traditional methods.
引用
收藏
相关论文
共 50 条
  • [1] Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum
    Hu, Mengqi
    Lou, Yifei
    Wang, Bao
    Yan, Ming
    Yang, Xiu
    Ye, Qiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [2] An Accelerated Three-Term Extension of a Descent Nonlinear Conjugate Gradient Method
    Aminifard Z.
    Babaie-Kafaki S.
    Mirhoseini N.
    Asia-Pacific Journal of Operational Research, 2023, 40 (03)
  • [3] Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization
    Lu, HB
    Jesmanowicz, A
    Li, SJ
    Hyde, JS
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 158 - 164
  • [4] Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent
    Qu, Qing
    Li, Xiao
    Zhu, Zhihui
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (03): : 1630 - 1652
  • [5] A Class of Descent Nonlinear Conjugate Gradient Methods
    Ying, Tao
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 14 - 16
  • [6] Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
    Wang, Bao
    Nguyen, Tan
    Sun, Tao
    Bertozzi, Andrea L.
    Baraniuk, Richard G.
    Osher, Stanley J.
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (02): : 738 - 761
  • [7] Global convergence of a descent nonlinear conjugate gradient method
    Li, Xiaoyong
    Liu, Hailin
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, : 79 - 84
  • [8] Accelerating Federated Learning via Momentum Gradient Descent
    Liu, Wei
    Chen, Li
    Chen, Yunfei
    Zhang, Wenyi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (08) : 1754 - 1766
  • [9] Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method
    Bhaya, A
    Kaszkurewicz, E
    NEURAL NETWORKS, 2004, 17 (01) : 65 - 71
  • [10] Sufficient descent nonlinear conjugate gradient methods with conjugacy condition
    Cheng, Wanyou
    Liu, Qunfeng
    NUMERICAL ALGORITHMS, 2010, 53 (01) : 113 - 131