Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum

被引:1
|
作者
Hu, Mengqi [1 ]
Lou, Yifei [2 ]
Wang, Bao [3 ]
Yan, Ming [4 ,5 ,6 ]
Yang, Xiu [1 ]
Ye, Qiang [7 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, 200 West Packer Ave, Bethlehem, PA 18015 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[3] Univ Utah, Imaging Inst, Dept Math & Sci Comp, 72 Cent Campus Dr, Salt Lake City, UT 84102 USA
[4] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 2001 Longxiang Blvd, Shenzhen, Guangdong, Peoples R China
[5] Michigan State Univ, Dept Computat Math Sci & Engn, 428 South Shaw Lane, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Math, 428 South Shaw Lane, E Lansing, MI 48824 USA
[7] Univ Kentucky, Dept Math, Lexington, KY 40513 USA
关键词
Accelerated gradient momentum; Operator splitting; Fixed step size; Convergence rate; GLOBAL CONVERGENCE; THRESHOLDING ALGORITHM; MINIMIZATION; L(1); REPRESENTATION; DIFFERENCE; SELECTION; RESTART;
D O I
10.1007/s10915-023-02148-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies an idea of adaptive momentum for the nonlinear conjugate gradient to accelerate optimization problems in sparse recovery. Specifically, we consider two types of minimization problems: a (single) differentiable function and the sum of a non-smooth function and a differentiable function. In the first case, we adopt a fixed step size to avoid the traditional line search and establish the convergence analysis of the proposed algorithm for a quadratic problem. This acceleration is further incorporated with an operator splitting technique to deal with the non-smooth function in the second case. We use the convex l(1) and the nonconvex l(1) - l(2) functionals as two case studies to demonstrate the efficiency of the proposed approaches over traditional methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum
    Mengqi Hu
    Yifei Lou
    Bao Wang
    Ming Yan
    Xiu Yang
    Qiang Ye
    Journal of Scientific Computing, 2023, 95
  • [2] An Accelerated Three-Term Extension of a Descent Nonlinear Conjugate Gradient Method
    Aminifard Z.
    Babaie-Kafaki S.
    Mirhoseini N.
    Asia-Pacific Journal of Operational Research, 2023, 40 (03)
  • [3] Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization
    Lu, HB
    Jesmanowicz, A
    Li, SJ
    Hyde, JS
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 158 - 164
  • [4] Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent
    Qu, Qing
    Li, Xiao
    Zhu, Zhihui
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (03): : 1630 - 1652
  • [5] A Class of Descent Nonlinear Conjugate Gradient Methods
    Ying, Tao
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 14 - 16
  • [6] Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
    Wang, Bao
    Nguyen, Tan
    Sun, Tao
    Bertozzi, Andrea L.
    Baraniuk, Richard G.
    Osher, Stanley J.
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (02): : 738 - 761
  • [7] Global convergence of a descent nonlinear conjugate gradient method
    Li, Xiaoyong
    Liu, Hailin
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, : 79 - 84
  • [8] Accelerating Federated Learning via Momentum Gradient Descent
    Liu, Wei
    Chen, Li
    Chen, Yunfei
    Zhang, Wenyi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (08) : 1754 - 1766
  • [9] Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method
    Bhaya, A
    Kaszkurewicz, E
    NEURAL NETWORKS, 2004, 17 (01) : 65 - 71
  • [10] Sufficient descent nonlinear conjugate gradient methods with conjugacy condition
    Cheng, Wanyou
    Liu, Qunfeng
    NUMERICAL ALGORITHMS, 2010, 53 (01) : 113 - 131