A nonstandard finite difference scheme and optimal control for an HIV model with Beddington–DeAngelis incidence and cure rate

被引:0
|
作者
Sanaa Moussa Salman
机构
[1] Alexandria University,Mathematics Department, Faculty of Education
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we incorporate the Beddington–DeAngelis incidence rate to a continuous-time HIV infection model with cure rate and a full logistic proliferation rate of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD4^+$$\end{document} T cells in both uninfected and infected cells. Equilibria and their local stability analysis are discussed. It is shown that the HIV-free equilibrium point is locally asymptotically stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0<1$$\end{document} and unstable if R0≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0\ge 1$$\end{document}, where R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} is the basic reproduction number. Whereas, the HIV equilibrium point is locally asymptotically stable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0>1$$\end{document}. A nonstandard finite difference method is applied to the continuous model to obtain its discrete counterpart. The scheme applied preserves the main features of the continuous model such as positivity, boundedness of the solutions, equilibria and their local stability. Moreover, an optimal control strategy is applied to the discrete-time model in order to reduce the number of infected cells as well as the number of free HIV particles. Numerical simulations are performed to verify the theoretical analysis obtained.
引用
收藏
相关论文
共 50 条
  • [21] A dynamically-consistent nonstandard finite difference scheme for the SICA model
    Vaz, Sandra
    Torres, Delfim F. M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (04) : 4552 - 4571
  • [22] A dynamically consistent nonstandard finite difference scheme for a predator–prey model
    Muhammad Sajjad Shabbir
    Qamar Din
    Muhammad Safeer
    Muhammad Asif Khan
    Khalil Ahmad
    Advances in Difference Equations, 2019
  • [23] Nonstandard finite difference schemes for some epidemic optimal control problems
    Tasse, Arsene J. Ouemba
    Kubalasa, Vuyiswa B.
    Tsanou, Berge
    Lubuma, Jean M. -S
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 228 : 1 - 22
  • [24] Dynamics of an infection-age HIV diffusive model with latent infected cell and Beddington–DeAngelis infection incidence
    Lei Shi
    Liping Wang
    Linhe Zhu
    Anwarud Din
    Xiaoyan Qi
    Peng Wu
    The European Physical Journal Plus, 137
  • [25] Dynamical complexity of a delay-induced eco-epidemic model with Beddington-DeAngelis incidence rate
    Dutta, Protyusha
    Sahoo, Debgopal
    Mondal, Sudeshna
    Samanta, Guruprasad
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 197 : 45 - 90
  • [26] Local and global stability analysis of HIV/AIDS by using a nonstandard finite difference scheme
    Morani, Amjid Hussain
    Saeed, Maha Mohammed
    Aslam, Muhammad
    Mehmoud, Atif
    Shokri, Ali
    Mukalazi, Herbert
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Dynamics of an infection-age HIV diffusive model with latent infected cell and Beddington-DeAngelis infection incidence
    Shi, Lei
    Wang, Liping
    Zhu, Linhe
    Din, Anwarud
    Qi, Xiaoyan
    Wu, Peng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [28] DYNAMICAL BEHAVIOR OF AN SIR EPIDEMIC MODEL WITH RATIO-DEPENDENT IMPULSIVE CONTROL AND BEDDINGTON-DEANGELIS INCIDENCE
    Huang, Ruili
    Zhang, Suxia
    Xu, Xiaxia
    JOURNAL OF BIOLOGICAL SYSTEMS, 2024, 32 (03) : 1093 - 1116
  • [29] A dynamically consistent nonstandard finite difference scheme for a generalized SEIR epidemic model
    Hoang, Manh Tuan
    Ehrhardt, Matthias
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (04) : 409 - 434
  • [30] A dynamically consistent nonstandard finite difference scheme for a predator-prey model
    Shabbir, Muhammad Sajjad
    Din, Qamar
    Safeer, Muhammad
    Khan, Muhammad Asif
    Ahmad, Khalil
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)