A nonstandard finite difference scheme and optimal control for an HIV model with Beddington–DeAngelis incidence and cure rate

被引:0
|
作者
Sanaa Moussa Salman
机构
[1] Alexandria University,Mathematics Department, Faculty of Education
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we incorporate the Beddington–DeAngelis incidence rate to a continuous-time HIV infection model with cure rate and a full logistic proliferation rate of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD4^+$$\end{document} T cells in both uninfected and infected cells. Equilibria and their local stability analysis are discussed. It is shown that the HIV-free equilibrium point is locally asymptotically stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0<1$$\end{document} and unstable if R0≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0\ge 1$$\end{document}, where R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document} is the basic reproduction number. Whereas, the HIV equilibrium point is locally asymptotically stable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0>1$$\end{document}. A nonstandard finite difference method is applied to the continuous model to obtain its discrete counterpart. The scheme applied preserves the main features of the continuous model such as positivity, boundedness of the solutions, equilibria and their local stability. Moreover, an optimal control strategy is applied to the discrete-time model in order to reduce the number of infected cells as well as the number of free HIV particles. Numerical simulations are performed to verify the theoretical analysis obtained.
引用
收藏
相关论文
共 50 条