The Equidistribution of Fourier Coefficients of Half Integral Weight Modular Forms on the Plane

被引:0
|
作者
Soufiane Mezroui
机构
[1] Abdelmalek Essaadi University,Laboratory of Information and Communication Technologies, Department of Information and Communication Systems, National School of Applied Sciences
来源
关键词
Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution; 11F30; 11F37;
D O I
暂无
中图分类号
学科分类号
摘要
Let Letf=∑n=1∞a(n)qn∈Sk+1/2(N,χ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{Let}}\;f = \sum\limits_{n = 1}^\infty {a(n){q^n} \in {S_{k + 1/2}}(N,{\chi _0})} $$\end{document} be a nonzero cuspidal Hecke eigenform of weight k+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k + {1 \over 2}$$\end{document} and the trivial nebentypus χ0, where the Fourier coefficients a(n) are real. Bruinier and Kohnen conjectured that the signs of a(n) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies {a(tn2)}n, where t is a squarefree integer such that a(t) ≠ 0. Let q and d be natural numbers such that (d, q) = 1. In this work, we show that {a(tn2)}n is equidistributed over any arithmetic progression n ≡ d mod q.
引用
收藏
页码:235 / 249
页数:14
相关论文
共 50 条
  • [1] The Equidistribution of Fourier Coefficients of Half Integral Weight Modular Forms on the Plane
    Mezroui, Soufiane
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 235 - 249
  • [2] On the Fourier coefficients of modular forms of half-integral weight
    Prasanna, Kartik
    [J]. FORUM MATHEMATICUM, 2010, 22 (01) : 153 - 177
  • [3] ON THE FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT
    Choie, Young Ju
    Kohnen, Winfried
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 1879 - 1883
  • [4] SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT
    Lau, Yuk-Kam
    Royer, Emmanuel
    Wu, Jie
    [J]. MATHEMATIKA, 2016, 62 (03) : 866 - 883
  • [5] On Fourier coefficients of modular forms of half integral weight at squarefree integers
    Y.-J. Jiang
    Y.-K. Lau
    G.-S. Lü
    E. Royer
    J. Wu
    [J]. Mathematische Zeitschrift, 2019, 293 : 789 - 808
  • [6] Signs of Fourier coefficients of half-integral weight modular forms
    Stephen Lester
    Maksym Radziwiłł
    [J]. Mathematische Annalen, 2021, 379 : 1553 - 1604
  • [7] Signs of Fourier coefficients of half-integral weight modular forms
    Lester, Stephen
    Radziwill, Maksym
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1553 - 1604
  • [8] FOURIER COEFFICIENTS OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT
    IWANIEC, H
    [J]. INVENTIONES MATHEMATICAE, 1987, 87 (02) : 385 - 401
  • [9] On Fourier coefficients of modular forms of half integral weight at squarefree integers
    Jiang, Y. -J.
    Lau, Y. -K.
    Lue, G. -S.
    Royer, E.
    Wu, J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 789 - 808
  • [10] A note on the Fourier coefficients of half-integral weight modular forms
    Kumar, Narasimha
    Purkait, Soma
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (04) : 369 - 378