Signs of Fourier coefficients of half-integral weight modular forms

被引:0
|
作者
Stephen Lester
Maksym Radziwiłł
机构
[1] Queen Mary University of London,School of Mathematical Sciences
[2] King’s College London,Department of Mathematics
[3] Caltech,Department of Mathematics
来源
Mathematische Annalen | 2021年 / 379卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let g be a Hecke cusp form of half-integral weight, level 4 and belonging to Kohnen’s plus subspace. Let c(n) denote the nth Fourier coefficient of g, normalized so that c(n) is real for all n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}. A theorem of Waldspurger determines the magnitude of c(n) at fundamental discriminants n by establishing that the square of c(n) is proportional to the central value of a certain L-function. The signs of the sequence c(n) however remain mysterious. Conditionally on the Generalized Riemann Hypothesis, we show that c(n)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(n) < 0$$\end{document} and respectively c(n)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(n) > 0$$\end{document} holds for a positive proportion of fundamental discriminants n. Moreover we show that the sequence {c(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{c(n)\}$$\end{document} where n ranges over fundamental discriminants changes sign a positive proportion of the time. Unconditionally, it is not known that a positive proportion of these coefficients are non-zero and we prove results about the sign of c(n) which are of the same quality as the best known non-vanishing results. Finally we discuss extensions of our result to general half-integral weight forms g of level 4N with N odd, square-free.
引用
收藏
页码:1553 / 1604
页数:51
相关论文
共 50 条