Material dispersion by oceanic internal waves

被引:0
|
作者
Peng Wang
Tamay M. Özgökmen
Angelique C. Haza
机构
[1] University of Miami,Rosenstiel School of Marine and Atmospheric Science
来源
关键词
Relative dispersion; Finite-scale Lyapunov exponent (FSLE); Garrett–Munk spectrum; Inertial oscillation;
D O I
暂无
中图分类号
学科分类号
摘要
Internal gravity waves that are generated in the open ocean have a universal frequency spectrum, called Garrett–Munk spectrum. By initializing internal waves that satisfy the Garrett–Munk spectrum in a non-hydrostatic numerical model, we investigate the material dispersion produced by these internal waves. Three numerical experiments are designed: Exp.-1 uses a linearly stratified fluid, Exp.-2 has an upper mixed layer, and Exp.-3 incorporates a circular front into the upper mixed layer. Resorting to neutrally buoyant particles, we investigate the dispersion in terms of metrics of the relative dispersion and finite-scale Lyapunov exponent (FSLE). Exp.-1 shows that the dispersion regime produced by these internal waves is between ballistic and diffusive based on relative dispersion, and is however ballistic according to FSLE. The maximum FSLE at scales of 100 m is about 5 day-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, which is comparable to that calculated using ocean drifters. Exp.-2 demonstrates that internal waves can generate flows and material dispersion in an upper mixed layer. However, when mixed layer eddies are present, as in Exp.-3, the dispersion in the mixed layer is controlled by the eddies. In addition, we show that inertial oscillations do not affect the relative dispersion, but impact FSLE at scales of inertial oscillations.
引用
收藏
页码:149 / 171
页数:22
相关论文
共 50 条
  • [31] ANOMALOUS FREQUENCY DISPERSION OF INTERNAL WAVES IN THE OCEAN
    DOTSENKO, SF
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1993, 29 (06): : 711 - 718
  • [32] ACCELERATION WAVES IN A MATERIAL WITH INTERNAL VARIABLES
    KOSINSKI, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1974, 22 (7-8): : 655 - 663
  • [33] Stratification parameters and dispersion of internal solitary waves
    Perevalova, E. G.
    Makarenko, N. I.
    ALL-RUSSIAN CONFERENCE ON NONLINEAR WAVES: THEORY AND NEW APPLICATIONS (WAVE16), 2016, 722
  • [34] ON THE BARBER DISPERSION-RELATION FOR INTERNAL WAVES
    TOUGH, RJA
    PHYSICA A, 1995, 216 (03): : 233 - 248
  • [35] ACCELERATION WAVES IN MATERIAL WITH INTERNAL PARAMETERS
    KOSINSKI, W
    PERZYNA, P
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1972, 20 (04): : 281 - &
  • [36] Oceanic internal solitary waves at the Indonesian submarine wreckage site
    Yankun Gong
    Jieshuo Xie
    Jiexin Xu
    Zhiwu Chen
    Yinghui He
    Shuqun Cai
    Acta Oceanologica Sinica, 2022, 41 (03) : 109 - 113
  • [37] Analysis of oceanic internal waves from airborne SAR images
    Li, XF
    Morrison, J
    Pietrafesa, L
    Ochadlick, A
    JOURNAL OF COASTAL RESEARCH, 1999, 15 (04) : 884 - 891
  • [38] Oceanic internal solitary waves at the Indonesian submarine wreckage site
    Gong, Yankun
    Xie, Jieshuo
    Xu, Jiexin
    Chen, Zhiwu
    He, Yinghui
    Cai, Shuqun
    ACTA OCEANOLOGICA SINICA, 2022, 41 (03) : 109 - 113
  • [39] CALCULATION OF EFFECT OF INTERNAL WAVES ON OCEANIC SOUND-TRANSMISSION
    FLATTE, SM
    TAPPERT, FD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 58 (06): : 1151 - 1159
  • [40] Oceanic internal solitary waves at the Indonesian submarine wreckage site
    Yankun Gong
    Jieshuo Xie
    Jiexin Xu
    Zhiwu Chen
    Yinghui He
    Shuqun Cai
    Acta Oceanologica Sinica, 2022, 41 : 109 - 113