Harmonic analysis problems associated with the k-Hankel Gabor transform

被引:0
|
作者
Hatem Mejjaoli
Salem Ben Saïd
机构
[1] Taibah University,College of Sciences, Department of Mathematics
[2] United Arab Emirates University,Department of Mathematical Sciences, College of Science
关键词
-Hankel transform; -Hankel Gabor transform; Plancherel formula; Inversion theorem; Heisenberg’s type inequality; Local Cowling–Price’s type inequalities; Faris–Price’s uncertainty principle; Primary 26D10; 43A32; Secondary 33C52; 43A15; 44A15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a continuous k-Hankel Gabor transform acting on a Hilbert space deforming L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb R)$$\end{document}. We prove a Plancherel formula and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-inversion formulas for it. We also prove several uncertainty principles for this transform such as Heisenberg type inequalities and Faris–Price type uncertainty principle.
引用
收藏
页码:1549 / 1593
页数:44
相关论文
共 50 条
  • [21] Weierstrass transform associated with the Hankel operator
    Omri, Slim
    Rachdi, Lakhdar Tannech
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 1 (02): : 1 - 16
  • [22] The k-Binomial Transforms and the Hankel Transform
    Spivey, Michael Z.
    Steil, Laura L.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2006, 9 (01)
  • [23] Wavelet Transform Associated with Quadratic-Phase Hankel Transform
    Roy, Chandra
    Kumar, Tanuj
    Prasad, Akhilesh
    Jha, Govind Kumar
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024,
  • [25] Wavelets associated with Hankel transform and their Weyl transforms
    Lizhong Peng
    Ruiqin Ma
    [J]. Science in China Series A: Mathematics, 2004, 47 : 393 - 400
  • [26] Wavelets associated with Hankel transform and their Weyl transforms
    PENG Lizhong
    MA Ruiqin LMAM School of Mathematical Sciences Peking University Beijing China
    [J]. Science in China,SerA., 2004, Ser.A.2004 (03) : 393 - 400
  • [27] Wavelets associated with Hankel transform and their Weyl transforms
    PENG Lizhong
    MA Ruiqin LMAM
    [J]. Science China Mathematics, 2004, (03) : 393 - 400
  • [28] Wavelets associated with Hankel transform and their Weyl transforms
    Peng, LZ
    Ma, RQ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (03): : 393 - 400
  • [29] K-functional related to the Deformed Hankel Transform
    Rakhimi, Larbi
    Khadari, Abdelmajid
    Daher, Radouan
    [J]. ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2023, 22 (01) : 13 - 20
  • [30] Harmonic analysis associated to the canonical Fourier Bessel transform
    Dhaouadi, Lazhar
    Sahbani, Jihed
    Fitouhi, Ahmed
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (04) : 290 - 315