Harmonic analysis problems associated with the k-Hankel Gabor transform

被引:0
|
作者
Hatem Mejjaoli
Salem Ben Saïd
机构
[1] Taibah University,College of Sciences, Department of Mathematics
[2] United Arab Emirates University,Department of Mathematical Sciences, College of Science
关键词
-Hankel transform; -Hankel Gabor transform; Plancherel formula; Inversion theorem; Heisenberg’s type inequality; Local Cowling–Price’s type inequalities; Faris–Price’s uncertainty principle; Primary 26D10; 43A32; Secondary 33C52; 43A15; 44A15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a continuous k-Hankel Gabor transform acting on a Hilbert space deforming L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb R)$$\end{document}. We prove a Plancherel formula and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-inversion formulas for it. We also prove several uncertainty principles for this transform such as Heisenberg type inequalities and Faris–Price type uncertainty principle.
引用
收藏
页码:1549 / 1593
页数:44
相关论文
共 50 条