Dynamics in the Schwarzschild Isosceles Three Body Problem

被引:0
|
作者
John A. Arredondo
Ernesto Pérez-Chavela
Cristina Stoica
机构
[1] UNAM,Centro de Ciencias Matematicas
[2] Universidad Autónoma Metropolitana-Iztapalapa,Departamento de Matemáticas
[3] Wilfrid Laurier University,Department of Mathematics
来源
关键词
Celestial mechanics; Isosceles three-body problem; Schwarzschild model; Singularities; Triple collision;
D O I
暂无
中图分类号
学科分类号
摘要
The Schwarzschild potential, defined as U(r)=-A/r-B/r3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(r)=-A/r-B/r^3$$\end{document}, where r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} is the relative distance between two mass points and A,B>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B>0$$\end{document}, models astrophysical and stellar dynamics systems in a classical context. In this paper we present a qualitative study of a three mass point system with mutual Schwarzschild interaction where the motion is restricted to isosceles configurations at all times. We retrieve the relative equilibria and provide the energy–momentum diagram. We further employ appropriate regularization transformations to analyze the behavior of the flow near triple collision. We emphasize the distinct features of the Schwarzschild model when compared to its Newtonian counterpart. We prove that, in contrast to the Newtonian case, on any level of energy the measure of the set on initial conditions leading to triple collision is positive. Further, whereas in the Newtonian problem triple collision is asymptotically reached only for zero angular momentum, in the Schwarzschild problem the triple collision is possible for nonzero total angular momenta (e.g., when two of the mass points spin infinitely many times around the center of mass). This phenomenon is known in celestial mechanics as the black-hole effect and is understood as an analog in the classical context of behavior near a Schwarzschild black hole. Also, while in the Newtonian problem all triple collision orbits are necessarily homothetic, in the Schwarzschild problem this is not necessarily true. In fact, in the Schwarzschild problem there exist triple collision orbits that are neither homothetic nor homographic.
引用
收藏
页码:997 / 1032
页数:35
相关论文
共 50 条
  • [21] Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem
    Nomikos, D. G.
    Papageorgiou, V. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 273 - 289
  • [22] Bifurcations in the mass ratio of the planar isosceles three-body problem
    Chesley, S
    Zare, K
    DYNAMICS OF SMALL BODIES IN THE SOLAR SYSTEM: A MAJOR KEY TO SOLAR SYSTEM STUDIES, 1999, 522 : 413 - 424
  • [23] Orbit's structure in the isosceles rectilinear restricted three-body problem
    Alfaro, JM
    Orellana, RB
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 67 (04): : 275 - 291
  • [24] New Phenomena in the Spatial Isosceles Three-Body Problem with Unequal Masses
    Yan, Duokui
    Liu, Rongchang
    Hu, Xingwei
    Mao, Weize
    Ouyang, Tiancheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (12):
  • [25] Orbit's Structure in the Isosceles Rectilinear Restricted Three-Body Problem
    J. Martínez Alfaro
    R. B. Orellana
    Celestial Mechanics and Dynamical Astronomy, 1997, 67 : 275 - 291
  • [26] Periodic solutions of the elliptic isosceles restricted three-body problem with collision
    Brandao, Lucia de Fatima
    Vidal, Claudio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (02) : 377 - 423
  • [27] Periodic Solutions of the Elliptic Isosceles Restricted Three-body Problem with Collision
    Lúcia de Fatima Brandão
    Claudio Vidal
    Journal of Dynamics and Differential Equations, 2008, 20 : 377 - 423
  • [28] The restricted planar isosceles three-body problem with non-negative energy
    Josep Maria Cors
    César Castilho
    Claudio Vidal
    Celestial Mechanics and Dynamical Astronomy, 2009, 103 : 163 - 177
  • [29] The restricted planar isosceles three-body problem with non-negative energy
    Cors, Josep Maria
    Castilho, Cesar
    Vidal, Claudio
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 103 (02): : 163 - 177
  • [30] Triple approaches in the plane isosceles equal-mass three-body problem
    Orlov, VV
    Petrova, AV
    Martynova, AI
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2001, 27 (10): : 678 - 682