The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform

被引:0
|
作者
Ghazouani, Sami [1 ]
Sahbani, Jihed [2 ,3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Jarzouna 7021, Bizerte, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Jarzouna 7021, Bizerte, Tunisia
[3] Univ Jendouba, ISLAIB Beja 9000, Beja, Tunisia
关键词
Fourier-Bessel transform; Linear canonical transform; Canonical Fourier-Bessel transform; Translation operator; Convolution product; Heat equation; Heat semigroups; Uncertainty principles;
D O I
10.1007/s11868-024-00608-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce the heat semigroups S nu m-1(t)t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathcal {S}}_{\nu }<^>{{\textbf{m}}<^>{-1}}(t)\right) _{t\ge 0}$$\end{document} related to Delta nu m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}$$\end{document} given by Delta nu m-1=d2dx2+2 nu+1x+2iabxddx-a2b2x2-2i nu+1ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}=\frac{d<^>{2}}{dx<^>{2}}+\left( \frac{2\nu +1}{x}+2i\frac{a}{b} x\right) \frac{d}{dx}-\left( \frac{a<^>{2}}{b<^>{2}}x<^>{2}-2i\left( \nu +1\right) \frac{a}{b}\right) \end{aligned}$$\end{document}and we study some of its important properties. In the present paper, several uncertainty principles for the canonical Fourier-Bessel transform are given, including the Beurling, Gelfand-Shilov and Cowling-Price uncertainty principles.
引用
收藏
页数:32
相关论文
共 50 条
  • [32] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    V. V. Katrakhov
    L. N. Lyakhov
    Differential Equations, 2011, 47 : 681 - 695
  • [33] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on Cn
    Chang Der-Chen
    Griener Peter
    Tie Jingzhi
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1722 - 1739
  • [34] On Recovery of the Singular Differential Laplace-Bessel Operator from the Fourier-Bessel Transform
    Sitnik, Sergey M.
    Fedorov, Vladimir E.
    Polovinkina, Marina V.
    Polovinkin, Igor P.
    MATHEMATICS, 2023, 11 (05)
  • [35] On estimates for the Fourier-Bessel integral transform in the space L2(ℝ+)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1103 - 1110
  • [36] ON SHARP HEAT AND SUBORDINATED KERNEL ESTIMATES IN THE FOURIER-BESSEL SETTING
    Nowak, Adam
    Roncal, Luz
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (04) : 1321 - 1342
  • [37] Harmonic analysis associated to the canonical Fourier Bessel transform
    Dhaouadi, Lazhar
    Sahbani, Jihed
    Fitouhi, Ahmed
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (04) : 290 - 315
  • [38] Boas Type and Titchmarsh Type Theorems for Generalized Fourier-Bessel Transform
    Volosivets S.
    Journal of Mathematical Sciences, 2023, 271 (2) : 115 - 125
  • [39] Fourier-Bessel Series Modeling of Dielectrophoretic Bionanoparticle Transport: Principles and Applications
    Bakewell, David J.
    Chichenkov, Aleksandr
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2012, 11 (01) : 79 - 86
  • [40] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858