The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform

被引:0
|
作者
Ghazouani, Sami [1 ]
Sahbani, Jihed [2 ,3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Jarzouna 7021, Bizerte, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Jarzouna 7021, Bizerte, Tunisia
[3] Univ Jendouba, ISLAIB Beja 9000, Beja, Tunisia
关键词
Fourier-Bessel transform; Linear canonical transform; Canonical Fourier-Bessel transform; Translation operator; Convolution product; Heat equation; Heat semigroups; Uncertainty principles;
D O I
10.1007/s11868-024-00608-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce the heat semigroups S nu m-1(t)t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathcal {S}}_{\nu }<^>{{\textbf{m}}<^>{-1}}(t)\right) _{t\ge 0}$$\end{document} related to Delta nu m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}$$\end{document} given by Delta nu m-1=d2dx2+2 nu+1x+2iabxddx-a2b2x2-2i nu+1ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}=\frac{d<^>{2}}{dx<^>{2}}+\left( \frac{2\nu +1}{x}+2i\frac{a}{b} x\right) \frac{d}{dx}-\left( \frac{a<^>{2}}{b<^>{2}}x<^>{2}-2i\left( \nu +1\right) \frac{a}{b}\right) \end{aligned}$$\end{document}and we study some of its important properties. In the present paper, several uncertainty principles for the canonical Fourier-Bessel transform are given, including the Beurling, Gelfand-Shilov and Cowling-Price uncertainty principles.
引用
收藏
页数:32
相关论文
共 50 条