Efficient estimation and variable selection for infinite variance autoregressive models

被引:1
|
作者
Linjun Tang
Zhangong Zhou
Changchun Wu
机构
[1] Jiaxing University,Department of Statistics
关键词
Autoregressive model; Infinite variance; Composite quantile regression; 62J07; 62F12;
D O I
10.1007/s12190-012-0567-7
中图分类号
学科分类号
摘要
In this paper, a self-weighted composite quantile regression estimation procedure is developed to estimate unknown parameter in an infinite variance autoregressive (IVAR) model. The proposed estimator is asymptotically normal and more efficient than a single quantile regression estimator. At the same time, the adaptive least absolute shrinkage and selection operator (LASSO) for variable selection are also suggested. We show that the adaptive LASSO based on the self-weighted composite quantile regression enjoys the oracle properties. Simulation studies and a real data example are conducted to examine the performance of the proposed approaches.
引用
收藏
页码:399 / 413
页数:14
相关论文
共 50 条
  • [31] Variable selection for spatial autoregressive models with a diverging number of parameters
    Xie, Tianfa
    Cao, Ruiyuan
    Du, Jiang
    [J]. STATISTICAL PAPERS, 2020, 61 (03) : 1125 - 1145
  • [32] Variable selection for spatial autoregressive models with a diverging number of parameters
    Tianfa Xie
    Ruiyuan Cao
    Jiang Du
    [J]. Statistical Papers, 2020, 61 : 1125 - 1145
  • [33] Directed graphs and variable selection in large vector autoregressive models
    Bertsche, Dominik
    Brueggemann, Ralf
    Kascha, Christian
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (02) : 223 - 246
  • [34] Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors
    Huang, Zhensheng
    Meng, Shuyu
    Zhang, Linlin
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 681 - 697
  • [35] CQR-based inference for the infinite-variance nearly nonstationary autoregressive models
    Fu, Ke-Ang
    Ni, Jialin
    Dong, Yajuan
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (01) : 1 - 9
  • [36] CQR-based inference for the infinite-variance nearly nonstationary autoregressive models
    Ke-Ang Fu
    Jialin Ni
    Yajuan Dong
    [J]. Lithuanian Mathematical Journal, 2022, 62 : 1 - 9
  • [37] Efficient estimation in smooth threshold autoregressive(1) models
    Nur D.
    Nair G.M.
    Yatawara N.D.
    [J]. Journal of Statistical Theory and Practice, 2008, 2 (1) : 83 - 94
  • [38] Efficient IV estimation for autoregressive models with conditional heteroskedasticity
    Kuersteiner, GM
    [J]. ECONOMETRIC THEORY, 2002, 18 (03) : 547 - 583
  • [39] PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS
    MIKOSCH, T
    GADRICH, T
    KLUPPELBERG, C
    ADLER, RJ
    [J]. ANNALS OF STATISTICS, 1995, 23 (01): : 305 - 326
  • [40] New efficient estimation and variable selection in models with single-index structure
    Wang, Kangning
    Lin, Lu
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 89 : 58 - 64