Faster least squares approximation

被引:1
|
作者
Petros Drineas
Michael W. Mahoney
S. Muthukrishnan
Tamás Sarlós
机构
[1] Rensselaer Polytechnic Institute,Department of Computer Science
[2] Stanford University,Department of Mathematics
[3] Google,undefined
[4] Inc.,undefined
[5] Yahoo! Research,undefined
来源
Numerische Mathematik | 2011年 / 117卷
关键词
65F99;
D O I
暂无
中图分类号
学科分类号
摘要
Least squares approximation is a technique to find an approximate solution to a system of linear equations that has no exact solution. In a typical setting, one lets n be the number of constraints and d be the number of variables, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \gg d}$$\end{document}. Then, existing exact methods find a solution vector in O(nd2) time. We present two randomized algorithms that provide accurate relative-error approximations to the optimal value and the solution vector of a least squares approximation problem more rapidly than existing exact algorithms. Both of our algorithms preprocess the data with the Randomized Hadamard transform. One then uniformly randomly samples constraints and solves the smaller problem on those constraints, and the other performs a sparse random projection and solves the smaller problem on those projected coordinates. In both cases, solving the smaller problem provides relative-error approximations, and, if n is sufficiently larger than d, the approximate solution can be computed in O(nd ln d) time.
引用
收藏
页码:219 / 249
页数:30
相关论文
共 50 条
  • [31] Minimax approximation from a least squares solution
    Lei, DD
    Mason, JC
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (3-4): : 351 - 359
  • [32] Least Squares Approximation of Flatness on Riemannian Manifolds
    Hirica, Iulia
    Udriste, Constantin
    Pripoae, Gabriel
    Tevy, Ionel
    MATHEMATICS, 2020, 8 (10) : 1 - 18
  • [33] OPTIMAL APPROXIMATION AND THE METHOD OF LEAST-SQUARES
    DELVOS, FJ
    SCHEMPP, W
    JOURNAL OF APPROXIMATION THEORY, 1981, 33 (03) : 214 - 223
  • [35] Analysis of moving least squares approximation revisited
    Mirzaei, Davoud
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 237 - 250
  • [36] Moving least squares multiresolution surface approximation
    Mederos, B
    Velho, L
    De Figueiredo, LH
    XVI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2003, : 19 - 26
  • [37] AN EFFICIENT ALGORITHM FOR THE CLASSICAL LEAST SQUARES APPROXIMATION
    Dimitrov, Dimitar K.
    Peixoto, Lourenco L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A3233 - A3249
  • [38] LEAST-SQUARES APPROXIMATION OF LYAPUNOV EXPONENTS
    BERGER, BS
    ROKNI, M
    QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (03) : 505 - 508
  • [39] LEAST-SQUARES APPROXIMATION BY RADIAL FUNCTIONS
    QUAK, E
    SIVAKUMAR, N
    WARD, JD
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (04) : 1043 - 1066
  • [40] Multilevel weighted least squares polynomial approximation
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    Tempone, Raul
    Wolfers, Soren
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02): : 649 - 677