Effects of common soil anions and pH on the uptake and accumulation of perchlorate in lettuce

被引:0
|
作者
Angelia L. Seyfferth
Maya K. Henderson
David R. Parker
机构
[1] University of California,Department of Environmental Sciences
来源
Plant and Soil | 2008年 / 302卷
关键词
Bicarbonate; Competition; Ion uptake; Nitrate; Perchlorate; pH;
D O I
暂无
中图分类号
学科分类号
摘要
A mechanistic understanding of perchlorate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document}) entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} phytoremediation. To determine whether common soil anions affect \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} (50 nM) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document} (4–12 mM), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{SO}}^{{2 - }}_{4} $$\end{document} (1–10 mM), or Cl− (5–15 mM) in hydroponic solution. The effects of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document} (0–5 mM) and pH (5.5–7.5) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} uptake were also examined. Increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document} in solution significantly reduced the amount of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl− had no significant effects on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} taken up by crisphead and green leaf lettuces, whereas increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document} significantly reduced \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} uptake in butter head lettuce. The inhibition by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document} across all lettuce genotypes suggests that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ClO}}^{ - }_{4} $$\end{document} may share an ion carrier with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document}, and the decrease in uptake with increasing pH or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document} provides macroscopic evidence for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\text{ClO}}^{ - }_{4} } \mathord{\left/ {\vphantom {{{\text{ClO}}^{ - }_{4} } {{\text{H}}^{ + } }}} \right. \kern-\nulldelimiterspace} {{\text{H}}^{ + } } $$\end{document} cotransport across the plasma membrane.
引用
收藏
页码:139 / 148
页数:9
相关论文
共 50 条
  • [41] Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize
    Sirisuntornlak, Napat
    Ullah, Hayat
    Sonjaroon, Weerasin
    Anusontpornperm, Somchai
    Arirob, Wallop
    Datta, Avishek
    SILICON, 2021, 13 (02) : 289 - 299
  • [42] Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize
    Napat Sirisuntornlak
    Hayat Ullah
    Weerasin Sonjaroon
    Somchai Anusontpornperm
    Wallop Arirob
    Avishek Datta
    Silicon, 2021, 13 : 289 - 299
  • [43] Effects of soil pH on the root growth of passion fruit and the mechanism of mineral uptake
    Niwayama, S.
    Higuchi, H.
    VIII INTERNATIONAL SYMPOSIUM ON MINERAL NUTRITION OF FRUIT CROPS, 2018, 1217 : 111 - 119
  • [44] Effects of soil pH on the uptake of Al, F and other elements by tea plants
    Fung, KF
    Wong, MH
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2002, 82 (01) : 146 - 152
  • [45] Field study on the uptake, accumulation and risk assessment of perchlorate in a soil-chard/spinach system: Impact of agronomic practices and fertilization
    Calderon, R.
    Palma, P.
    Eltit, K.
    Arancibia-Miranda, N.
    Silva-Moreno, E.
    Yu, W.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 719
  • [46] Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation
    Zhang, Yuping
    Sallach, J. Brett
    Hodges, Laurie
    Snow, Daniel D.
    Bartelt-Hunt, Shannon L.
    Eskridge, Kent M.
    Li, Xu
    ENVIRONMENTAL POLLUTION, 2016, 208 : 523 - 531
  • [47] Soil aluminium uptake and accumulation by Paspalum notatum
    Huang, Juan
    Xia, Hanping
    Li, Zhi'an
    Xiong, Yanmei
    Kong, Guohui
    Huang, Juan
    WASTE MANAGEMENT & RESEARCH, 2009, 27 (07) : 668 - 675
  • [48] Effects of selenate and selenite on selenium accumulation and speciation in lettuce
    Li, Yan
    Xiao, Yiran
    Hao, Jinghong
    Fan, Shuangxi
    Dong, Ruifang
    Zeng, Haihong
    Liu, Chaojie
    Han, Yingyan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 192 : 162 - 171
  • [49] Uptake, Metabolism, and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce
    Castan, Stephanie
    Sherman, Anya
    Peng, Ruoting
    Zumstein, Michael T.
    Wanek, Wolfgang
    Hueffer, Thorsten
    Hofmann, Thilo
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (01) : 168 - 178
  • [50] Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce
    Bhalsod, Gemini D.
    Chuang, Ya-Hui
    Jeon, Sangho
    Gui, Wenjun
    Li, Hui
    Ryser, Elliot T.
    Guber, Andrey K.
    Zhang, Wei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (04) : 822 - 830