Classical Euclidean Wormhole Solution and Wave Function for a Nonlinear Scalar Field

被引:0
|
作者
H. Q. Lu
L. M. Shen
P. Ji
G. F. Ji
N. J. Sun
机构
[1] The Shanghai University,Department of Physics
关键词
Euclidean wormhole; Born—Infeld field; wormhole wave function; Wheeler—Dewitt equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the classical Euclidean wormhole solution of the Born—Infeld scalar field. The corresponding classical Euclidean wormhole solution can be obtained analytically for both very small and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document}. At the extreme limit of small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document} the wormhole solution has the same format as one obtained by Giddings and Strominger (Nuclear Physics B306, 890, 1988). At the extreme limit of large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document} the wormhole solution is a new one. The wormhole wave functions can also be obtained for both very small and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document}. These wormhole wave functions are regarded as solutions of quantum-mechanical Wheeler—Dewitt equation with certain boundary conditions.
引用
收藏
页码:837 / 844
页数:7
相关论文
共 50 条