Dynamic behaviour of YAG transparent ceramic under ramp wave and shock compression loading up to 20 GPa

被引:0
|
作者
K. Bao
X. Zhang
G. Wang
J. Deng
T. Chong
D. Han
L. Bingqiang
M. Tan
机构
[1] Nanjing University of Science and Technology,School of Mechanical Engineering
[2] The System Design Institute of Mechanical-Electrical Engineering,Institute of Fluid Physics
[3] CAEP,Shanghai Institute of Ceramics
[4] Chinese Academy of Sciences,undefined
来源
Shock Waves | 2023年 / 33卷
关键词
YAG transparent ceramic; Ramp wave compression; Shock compression; Elastic limit decay; Equation of state;
D O I
暂无
中图分类号
学科分类号
摘要
YAG transparent ceramic has great potential in the applications to transparent armour protection modules. To study the dynamic behaviour and obtain the parameters for the equation of state of YAG under the load of longitudinal stress ranging from 0 to 20 GPa, ramp wave and shock compression experiments were conducted based on the electromagnetic loading test platform. The Hugoniot data, isentropic data, dynamic strength, and elastic limit of YAG were obtained. The results showed that the relationship between the longitudinal wave speed and the particle velocity of YAG was linear when the longitudinal stress was lower than the elastic limit. The quasi-isentropic compression and shock Hugoniot compression curves were coincident when the stress in YAG was below 10 GPa; however, a separation of the two curves occurred when the stress in YAG ranged from 10 GPa to the elastic limit. Moreover, the effect of strain rate on the fracture stress of YAG under a moderate strain rate of 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\textrm{5}}$$\end{document}–106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\textrm{6}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} was more evident than in other strain rate ranges. The amplitude of the precursor wave decayed with increasing sample thickness.
引用
收藏
页码:585 / 596
页数:11
相关论文
共 50 条
  • [21] Shock wave speed of irregular honeycombs under dynamic compression
    Wang, P.
    Zheng, Z. J.
    Yu, J. L.
    Liao, S. F.
    [J]. ADVANCED MATERIALS, MECHANICAL AND STRUCTURAL ENGINEERING, 2016, : 281 - 285
  • [22] Similar behavior of thermoelectric properties of lanthanides under strong compression up to 20 GPa
    Shchennikov, Vladimir V.
    Morozova, Natalia V.
    Ovsyannikov, Sergey V.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)
  • [23] Numerical simulation of mechanical behaviour of concrete under shock wave loading
    Karakulov, V. V.
    Smolin, I. Yu
    Kulkov, S. N.
    [J]. 3RD INTERNATIONAL CONFERENCE ON RHEOLOGY AND MODELING OF MATERIALS (IC-RMM3), 2018, 1045
  • [24] MECHANICAL BEHAVIOUR OF BULK RAPESEEDS UNDER QUASI DYNAMIC COMPRESSION LOADING
    Herak, David
    Sleger, Vladimir
    Mizera, Cestmir
    Sedlacek, Ales
    [J]. 14TH INTERNATIONAL SCIENTIFIC CONFERENCE: ENGINEERING FOR RURAL DEVELOPMENT, 2015, : 28 - 32
  • [25] TEMPERATURE MEASUREMENTS AND HYDROGEN TRANSFORMATION UNDER DYNAMIC COMPRESSION UP TO 150 GPA.
    Nikolaev, D. N.
    Ternovoi, V. Ya.
    Pyalling, A. A.
    Kvitov, S. V.
    Fortov, V. E.
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [26] Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression
    Jiang Dong-Dong
    Do Jin-Mei
    Gu Yan
    Feng Yu-Jun
    [J]. ACTA PHYSICA SINICA, 2008, 57 (01) : 566 - 570
  • [27] Thermodynamic parameters of helium under shock-wave and quasi-isentropic compressions at pressures up to 4800 GPa and compression ratios up to 900
    Mochalov, M. A.
    Il'kaev, R. I.
    Fortov, V. E.
    Mikhailov, A. L.
    Arinin, V. A.
    Blikov, A. O.
    Elfimov, S. E.
    Komrakov, V. A.
    Ogorodnikov, V. A.
    Ryzhkov, A. V.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2017, 125 (05) : 948 - 963
  • [28] Thermodynamic parameters of helium under shock-wave and quasi-isentropic compressions at pressures up to 4800 GPa and compression ratios up to 900
    M. A. Mochalov
    R. I. Il’kaev
    V. E. Fortov
    A. L. Mikhailov
    V. A. Arinin
    A. O. Blikov
    S. E. Elfimov
    V. A. Komrakov
    V. A. Ogorodnikov
    A. V. Ryzhkov
    [J]. Journal of Experimental and Theoretical Physics, 2017, 125 : 948 - 963
  • [29] ELECTRICAL-CONDUCTIVITY MEASUREMENT OF FAYALITE UNDER SHOCK COMPRESSION UP TO 56-GPA
    MASHIMO, T
    KONDO, KI
    SAWAOKA, A
    SYONO, Y
    TAKEI, H
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1980, 85 (NB4): : 1876 - 1881
  • [30] Numerical study of rate-dependent strength behavior under ramp and shock wave loading
    Ding, J. L.
    Asay, J. R.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (04) : 695 - 714