On connection formulas for asymptotic expansions for some special solutions of the fifth painlevé equation

被引:0
|
作者
Andreev F.V.
Kitaev A.V.
机构
关键词
Singular Point; Asymptotic Expansion; Linear Ordinary Differential Equation; Canonical Solution; Monodromy Matrice;
D O I
10.1007/BF02673590
中图分类号
学科分类号
摘要
Asymptotic expansions for some special solutions of the fifth Painlevé equation for x → 0 and for x → +∞ and the corresponding connection formulas are obtained. An example of application of the obtained formulas to the third Painlevé equation is given.© 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:808 / 815
页数:7
相关论文
共 50 条
  • [41] All asymptotic expansions of solutions to the sixth Painleve equation
    Bruno, A. D.
    Goryuchkina, I. V.
    DOKLADY MATHEMATICS, 2007, 76 (03) : 851 - 855
  • [42] ASYMPTOTIC FORMULAS FOR THE SOLUTIONS OF A LINEAR DELAY DIFFERENCE EQUATION
    GYORI, I
    PITUK, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) : 376 - 392
  • [43] Painlev, analysis and some solutions of variable coefficient Benny equation
    Kumar, Rajeev
    Gupta, R. K.
    Bhatia, S. S.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1111 - 1122
  • [44] Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation
    Lakhveer Kaur
    Abdul-Majid Wazwaz
    Nonlinear Dynamics, 2018, 94 : 2469 - 2477
  • [45] Painlevé analysis and some solutions of variable coefficient Benny equation
    RAJEEV KUMAR
    R K GUPTA
    S S BHATIA
    Pramana, 2015, 85 : 1111 - 1122
  • [46] Weak nonlinear asymptotic solutions for the fourth order analogue of the second Painlevé equation
    Ilia Yu. Gaiur
    Nikolay A. Kudryashov
    Regular and Chaotic Dynamics, 2017, 22 : 266 - 271
  • [47] ASYMPTOTIC EXPANSIONS OF SOLUTIONS TO DIRICHLET PROBLEM FOR ELLIPTIC EQUATION WITH SINGULARITIES
    Tursunov, D. A.
    Erkebaev, U. Z.
    UFA MATHEMATICAL JOURNAL, 2016, 8 (01): : 97 - 107
  • [48] Asymptotic expansions of traveling wave solutions for a quasilinear parabolic equation
    Anada, Koichi
    Ishiwata, Tetsuya
    Ushijima, Takeo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (03) : 889 - 920
  • [49] Asymptotic expansions of traveling wave solutions for a quasilinear parabolic equation
    Koichi Anada
    Tetsuya Ishiwata
    Takeo Ushijima
    Japan Journal of Industrial and Applied Mathematics, 2022, 39 : 889 - 920
  • [50] SOME ASYMPTOTIC EXPANSIONS OF A THIRD-ORDER DIFFERENTIAL EQUATION
    OFFEI, DN
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (173P): : 71 - &