Targeted genome editing in algae using CRISPR/Cas9

被引:17
|
作者
Tanwar A. [1 ]
Sharma S. [1 ]
Kumar S. [1 ]
机构
[1] International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi
来源
Indian Journal of Plant Physiology | 2018年 / 23卷 / 4期
关键词
Biofuel; CRISPR; Genome editing; Microalgae;
D O I
10.1007/s40502-018-0423-3
中图分类号
学科分类号
摘要
The emergence of nuclease guided genome editing tools like FokI-I, TALENS, meganucleases, and CRISPR associated Cas9 could be a revolutionary step for the improvement of different organisms. These tools have helped in performing site-specific editing in an efficient and reliable manner to obtain the desired results. Of all the nucleases, CRISPR/Cas9 is emerging a most favourite arsenal owing to its easy adaptability, versatility, and cost-effectiveness. It has been successfully employed in all the model systems ranging from multicellular organisms to single-celled ones including algae, which are a diverse group of photosynthetic organisms and promising sources for the sustainable biofuel. The CRISPR/Cas9 technology has been used efficiently to generate stable targeted gene mutations in some algal species and has great potential to be explored further for the commercially important algal species to produce sustainable algae biofuel, pharmaceuticals and value-added products. © 2018, Indian Society for Plant Physiology.
引用
收藏
页码:653 / 669
页数:16
相关论文
共 50 条
  • [31] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [32] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [33] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [34] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [35] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [36] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [37] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [38] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [39] Translating CRISPR/Cas9 genome editing into therapeutics
    Barnes, T. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A140 - A141
  • [40] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462