On the Geometric Ramsey Number of Outerplanar Graphs

被引:0
|
作者
Josef Cibulka
Pu Gao
Marek Krčál
Tomáš Valla
Pavel Valtr
机构
[1] Charles University,Department of Applied Mathematics, Faculty of Mathematics and Physics
[2] Max-Planck-Institut für Informatik,Faculty of Information Technology
[3] IST Austria,undefined
[4] Czech Technical University,undefined
来源
关键词
Geometric Ramsey theory; Outerplanar graph; Ordered Ramsey theory; Pathwidth; 52C35; 05C55; 05C10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n$$\end{document} vertices are bounded by O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{3})$$\end{document} and O(n10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{10})$$\end{document}, in the convex and general case, respectively. We then apply similar methods to prove an nO(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{O(\log (n))}$$\end{document} upper bound on the Ramsey number of a path with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} ordered vertices.
引用
收藏
页码:64 / 79
页数:15
相关论文
共 50 条
  • [1] On the Geometric Ramsey Number of Outerplanar Graphs
    Cibulka, Josef
    Gao, Pu
    Krcal, Marek
    Valla, Tomas
    Valtr, Pavel
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 64 - 79
  • [2] Anti-Ramsey number of matchings in outerplanar graphs
    Jin, Zemin
    Yu, Rui
    Sun, Yuefang
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 345 : 125 - 135
  • [3] The decycling number of outerplanar graphs
    Huilan Chang
    Hung-Lin Fu
    Min-Yun Lien
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 536 - 542
  • [4] The decycling number of outerplanar graphs
    Chang, Huilan
    Fu, Hung-Lin
    Lien, Min-Yun
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 536 - 542
  • [5] Game chromatic number of outerplanar graphs
    Guan, DJ
    Zhu, XD
    [J]. JOURNAL OF GRAPH THEORY, 1999, 30 (01) : 67 - 70
  • [6] Injective Chromatic Number of Outerplanar Graphs
    Mozafari-Nia, Mahsa
    Omoomi, Behnaz
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1309 - 1320
  • [7] Isolation number of maximal outerplanar graphs
    Tokunaga, Shin-ichi
    Jiarasuksakun, Thiradet
    Kaemawichanurat, Pawaton
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 215 - 218
  • [8] The incidence coloring number of Halin graphs and outerplanar graphs
    Wang, SD
    Chen, DL
    Pang, SC
    [J]. DISCRETE MATHEMATICS, 2002, 256 (1-2) : 397 - 405
  • [9] The Ramsey number of dense graphs
    Conlon, David
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 483 - 496
  • [10] On the Bend-Number of Planar and Outerplanar Graphs
    Heldt, Daniel
    Knauer, Kolja
    Ueckerdt, Torsten
    [J]. LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 458 - 469