The decycling number of outerplanar graphs

被引:3
|
作者
Chang, Huilan [1 ,2 ]
Fu, Hung-Lin [1 ]
Lien, Min-Yun [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
关键词
Decycling number; Feedback vertex number; Cycle packing number; Outerplanar graph; FEEDBACK VERTEX SET; APPROXIMATION ALGORITHMS;
D O I
10.1007/s10878-012-9455-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a graph G, let tau(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)a parts per thousand currency sign tau(G)a parts per thousand currency sign2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if tau(G)=c(G) and upper-extremal if tau(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all , then G is lower-extremal.
引用
收藏
页码:536 / 542
页数:7
相关论文
共 50 条
  • [1] The decycling number of outerplanar graphs
    Huilan Chang
    Hung-Lin Fu
    Min-Yun Lien
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 536 - 542
  • [2] Decycling Number of Some Graphs
    魏二玲
    刘彦佩
    [J]. 运筹学学报, 1999, (01) : 24 - 28
  • [3] The decycling number of cubic graphs
    Punnim, N
    [J]. COMBINATORIAL GEOMETRY AND GRAPH THEORY, 2005, 3330 : 141 - 145
  • [4] The Decycling Number of Regular Graphs
    Punnim, N.
    [J]. THAI JOURNAL OF MATHEMATICS, 2006, 4 (01): : 145 - 161
  • [5] Decycling Number of Circular Graphs
    Wei, Erling
    Liu, Yanpei
    Li, Zhaoxiang
    [J]. OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 387 - +
  • [6] NEW FORMULAE FOR THE DECYCLING NUMBER OF GRAPHS
    Yang, Chao
    Ren, Han
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 125 - 141
  • [7] The decycling number of generalized Petersen graphs
    Gao, Liqing
    Xu, Xirong
    Wang, Jian
    Zhu, Dejun
    Yang, Yuansheng
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 181 : 297 - 300
  • [8] The decycling number of cubic planar graphs
    Punnim, Narong
    [J]. Discrete Geometry, Combinatorics and Graph Theory, 2007, 4381 : 149 - 161
  • [9] A new formula for the decycling number of regular graphs
    Ren, Han
    Yang, Chao
    Zhao, Tian-xiao
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 3020 - 3031
  • [10] The decycling number and maximum genus of cubic graphs
    Long, Shude
    Ren, Han
    [J]. JOURNAL OF GRAPH THEORY, 2018, 88 (03) : 375 - 384