Domination Number of Graphs Without Small Cycles

被引:0
|
作者
Xue-gang Chen
Moo Young Sohn
机构
[1] North China Electric Power University,Department of Mathematics
[2] Changwon National University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination number; Bounds; Minimum degree;
D O I
暂无
中图分类号
学科分类号
摘要
It has been shown (J. Harant and D. Rautenbach, Domination in bipartite graphs. Discrete Math. 309:113–122, 2009) that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 nor 13 is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}. They believed that the assumption that the graphs do not contain cycles of length 10 might be replaced by the exclusion of finitely many exceptional graphs. In this paper, we positively answer that if G is a connected graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5 nor 7 and is not one of three exceptional graphs, then the domination number of G is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}.
引用
下载
收藏
页码:821 / 830
页数:9
相关论文
共 50 条
  • [11] Note on the domination number of graphs with forbidden cycles of lengths not divisible by 3
    Khoeilar, R.
    Karami, H.
    Chellali, M.
    Sheikholeslami, S. M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 101 - 108
  • [12] On the ratio of the domination number and the independent domination number in graphs
    Furuya, Michitaka
    Ozeki, Kenta
    Sasaki, Akinari
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 157 - 159
  • [13] On the maximum number of odd cycles in graphs without smaller odd cycles
    Grzesik, Andrzej
    Kielak, Bartlomiej
    JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 240 - 246
  • [14] ON THE MAXIMUM NUMBER OF ODD CYCLES IN GRAPHS WITHOUT SMALLER ODD CYCLES
    Grzesik, A.
    Kielak, B.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 755 - 758
  • [15] A note on graphs with large girth and small minus domination number
    Lee, J
    Sohn, MY
    Kim, HK
    DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 299 - 303
  • [16] The maximum number of cliques in graphs without long cycles
    Luo, Ruth
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 219 - 226
  • [17] GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBER
    Vaidya, S. K.
    Pandit, R. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 74 - 79
  • [18] Domination and Signed Domination Number of Cayley Graphs
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2019, 14 (01): : 35 - 42
  • [19] Transferable domination number of graphs
    Chang, Fei-Huang
    Chia, Ma-Lian
    Kuo, David
    Deng, Wen
    Liaw, Sheng-Chyang
    Pan, Zhishi
    DISCRETE APPLIED MATHEMATICS, 2022, 313 : 135 - 146
  • [20] Resolving domination number of graphs
    Alfarisi, Ridho
    Dafik
    Kristiana, Arika Indah
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (06)