Domination Number of Graphs Without Small Cycles

被引:0
|
作者
Xue-gang Chen
Moo Young Sohn
机构
[1] North China Electric Power University,Department of Mathematics
[2] Changwon National University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination number; Bounds; Minimum degree;
D O I
暂无
中图分类号
学科分类号
摘要
It has been shown (J. Harant and D. Rautenbach, Domination in bipartite graphs. Discrete Math. 309:113–122, 2009) that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 nor 13 is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}. They believed that the assumption that the graphs do not contain cycles of length 10 might be replaced by the exclusion of finitely many exceptional graphs. In this paper, we positively answer that if G is a connected graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5 nor 7 and is not one of three exceptional graphs, then the domination number of G is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}.
引用
下载
收藏
页码:821 / 830
页数:9
相关论文
共 50 条
  • [1] Domination Number of Graphs Without Small Cycles
    Chen, Xue-gang
    Sohn, Moo Young
    GRAPHS AND COMBINATORICS, 2011, 27 (06) : 821 - 830
  • [2] The secure domination number of Cartesian products of small graphs with paths and cycles
    Haythorpe, Michael
    Newcombe, Alex
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 32 - 45
  • [3] Bondage Number of Planar Graphs without Small Cycles
    Hou, Jianfeng
    Liu, Guizhen
    Wu, Jianliang
    UTILITAS MATHEMATICA, 2011, 84 : 189 - 199
  • [4] ON GRAPHS WITH SMALL GAME DOMINATION NUMBER
    Klavzar, Sandi
    Kosmrlj, Gasper
    Schmidt, Simon
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 30 - 45
  • [5] The Kernelization Complexity of Connected Domination in Graphs with (no) Small Cycles
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    ALGORITHMICA, 2014, 68 (02) : 504 - 530
  • [6] The Kernelization Complexity of Connected Domination in Graphs with (no) Small Cycles
    Neeldhara Misra
    Geevarghese Philip
    Venkatesh Raman
    Saket Saurabh
    Algorithmica, 2014, 68 : 504 - 530
  • [7] Harmonic graphs with small number of cycles
    Borovicanin, B
    Grünewald, S
    Gutman, I
    Petrovic, M
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 31 - 44
  • [8] On the 2-domination Number of Cylinders with Small Cycles
    Garzon, Ester M.
    Martinez, Jose A.
    Moreno, Juan J.
    Puertas, Maria L.
    FUNDAMENTA INFORMATICAE, 2022, 185 (02) : 185 - 199
  • [9] Graphs with small or large Roman {3}-domination number
    Ebrahimi, Nafiseh
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (03) : 1195 - 1208
  • [10] ON THE NUMBER OF GRAPHS WITHOUT 4-CYCLES
    KLEITMAN, DJ
    WINSTON, KJ
    DISCRETE MATHEMATICS, 1982, 41 (02) : 167 - 172