Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage

被引:0
|
作者
Xuechen Li
Yaru Li
Panpan Zhang
Pengying Jia
Lifang Dong
机构
[1] College of Physics Science & Technology,
[2] Hebei University,undefined
[3] Key Laboratory of Photo-Electronics Information Materials of Hebei Province,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction.
引用
收藏
相关论文
共 50 条
  • [21] EVOLUTION OF ION-ACOUSTIC INSTABILITY IN A DIRECT-CURRENT DISCHARGE PLASMA
    YAMADA, M
    RAETHER, M
    [J]. PHYSICS OF FLUIDS, 1975, 18 (03) : 361 - 368
  • [22] Two-Dimensional Simulation of Hydrogen Direct-Current Discharge Plasma
    刘竞业
    张明
    [J]. Plasma Science and Technology, 2012, (08) : 693 - 698
  • [23] A large gap uniform discharge excited by a direct-current voltage at atmospheric pressure
    Li, Xuechen
    Zhao, Huanhuan
    Jia, Pengying
    Bao, Wenting
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (22)
  • [24] CATALYTIC SYNTHESIS OF CARBON NANOTUBES ASSISTED BY BARRIER-DISCHARGE PLASMA
    Shushkov, S. V.
    Gorbatov, S. V.
    Mikhailov, A. A.
    Pliavaka, F. V.
    Pliavaka, K. F.
    Zhdanok, S. A.
    Savenko, V. P.
    Belanovich, A. L.
    Shchukin, G. L.
    Sviridov, D. V.
    [J]. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2007, : 455 - +
  • [25] DICHROISM IN A DIRECT-CURRENT DISCHARGE IN NE
    PAVLOV, AV
    POLISHCHUK, VA
    CHAIKA, MP
    [J]. OPTIKA I SPEKTROSKOPIYA, 1980, 49 (05): : 998 - 1000
  • [26] Modification of Polyvinyltrimethylsilane in Direct-Current Discharge
    A. V. Zinoviev
    M. S. Piskarev
    E. A. Skryleva
    B. R. Senatulin
    A. K. Gatin
    A. B. Gilman
    D. A. Syrtsova
    V. V. Teplyakov
    A. A. Kuznetsov
    [J]. High Energy Chemistry, 2021, 55 : 407 - 413
  • [27] Polymerization of anthracene in a direct-current discharge
    Drachev, AI
    Gil'man, AB
    Kuznetsov, AA
    [J]. HIGH ENERGY CHEMISTRY, 2005, 39 (06) : 418 - 419
  • [28] Surface barrier-discharge plasma treatment of aqueous phenol solutions
    Grinevich, VI
    Bubnov, AG
    Kuvykin, NA
    Kostrov, VV
    [J]. HIGH ENERGY CHEMISTRY, 1999, 33 (02) : 114 - 118
  • [29] Polypropylene Films in a Direct-Current Discharge
    A. B. Gil'man
    L. A. Rishina
    A. I. Drachev
    L. S. Shibryaeva
    [J]. High Energy Chemistry, 2001, 35 : 128 - 133
  • [30] A voltage stabilizer for a direct-current generator
    Schwarz, WM
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1942, 13 (05): : 213 - 214