Robust optimization;
Mixed-integer nonlinear optimization;
Outer approximation;
Bundle method;
Gas transport problem;
90C17;
90C30;
90C11;
90C47;
90C35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Currently, few approaches are available for mixed-integer nonlinear robust optimization. Those that do exist typically either require restrictive assumptions on the problem structure or do not guarantee robust protection. In this work, we develop an algorithm for convex mixed-integer nonlinear robust optimization problems where a key feature is that the method does not rely on a specific structure of the inner worst-case (adversarial) problem and allows the latter to be non-convex. A major challenge of such a general nonlinear setting is ensuring robust protection, as this calls for a global solution of the non-convex adversarial problem. Our method is able to achieve this up to a tolerance, by requiring worst-case evaluations only up to a certain precision. For example, the necessary assumptions can be met by approximating a non-convex adversarial via piecewise relaxations and solving the resulting problem up to any requested error as a mixed-integer linear problem.