Future Ontology: Indeterminate Existence or Non-existence?

被引:0
|
作者
Michael Tze-Sung Longenecker
机构
[1] Wuhan University,School of Philosophy
来源
Philosophia | 2020年 / 48卷
关键词
Future ontology; Open future; Future contingents; Indeterminacy; Vagueness; Growing block; Grounding;
D O I
暂无
中图分类号
学科分类号
摘要
The Growing Block Theory of time says that the metaphysical openness of the future should be understood in terms of there not being any future objects or events. But in a series of works, Ross Cameron, Elizabeth Barnes, and Robbie Williams have developed a competing view that understands metaphysical openness in terms of it being indeterminate whether there exist future objects or events. I argue that the three reasons they give for preferring their account are not compelling. And since the notion of “indeterminate existence” suffers conceptual problems, the Growing Block is the preferable view.
引用
下载
收藏
页码:1493 / 1500
页数:7
相关论文
共 50 条
  • [21] Existence and Non-existence of Length Averages for Foliations
    Yushi Nakano
    Tomoo Yokoyama
    Communications in Mathematical Physics, 2019, 372 : 367 - 383
  • [22] Existence and non-existence in the moral hazard problem
    Moroni, Sofia
    Swinkels, Jeroen
    JOURNAL OF ECONOMIC THEORY, 2014, 150 : 668 - 682
  • [23] Existence and non-existence of solutions for an elliptic system
    Covei, Dragos-Patru
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 118 - 123
  • [24] Existence and Non-existence of a Finite Invariant Measure
    Eigen, Stanley
    Hajian, Arshag
    Ito, Yuji
    Prasad, Vidhu S.
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 339 - 358
  • [25] Einstein solvmanifolds: existence and non-existence questions
    Lauret, Jorge
    Will, Cynthia
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 199 - 225
  • [26] Einstein solvmanifolds: existence and non-existence questions
    Jorge Lauret
    Cynthia Will
    Mathematische Annalen, 2011, 350 : 199 - 225
  • [27] Existence and Non-existence of Length Averages for Foliations
    Nakano, Yushi
    Yokoyama, Tomoo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 372 (02) : 367 - 383
  • [28] Generic existence and non-existence of approximate fixed points
    Reich, Simeon
    Zaslavski, Alexander J.
    FIXED POINT THEORY AND APPLICATIONS, VOL 7, 2007, 7 : 167 - +
  • [29] Existence and non-existence of total eccentric graphical intervals
    Manivannan, Petchimuthu
    Sundarakannan, Mahilmaran
    Arockiaraj, Sonasalam
    SCIENCEASIA, 2024, 50 (03):
  • [30] Existence and non-existence of minimizers for Poincaré–Sobolev inequalities
    Rafael D. Benguria
    Cristobal Vallejos
    Hanne Van Den Bosch
    Calculus of Variations and Partial Differential Equations, 2020, 59