Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian

被引:0
|
作者
Pierre Aime Feulefack
Sven Jarohs
Tobias Weth
机构
[1] Goethe-Universität Frankfurt,Institut für Mathematik
[2] African Institute for Mathematical Sciences in Senegal (AIMS Senegal),undefined
关键词
Fractional Laplacian; Small order expansion; Logarithmic Laplacian; Uniform regularity; 35R11; 45C05; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} in bounded open Lipschitz sets in the small order limit s→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \rightarrow 0^+$$\end{document}. While it is easy to see that all eigenvalues converge to 1 as s→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \rightarrow 0^+$$\end{document}, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2log|ξ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\log |\xi |$$\end{document}. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-normalized Dirichlet eigenfunctions of (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} corresponding to the k-th eigenvalue are uniformly bounded and converge to the set of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.
引用
收藏
相关论文
共 50 条
  • [1] Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
    Feulefack, Pierre Aime
    Jarohs, Sven
    Weth, Tobias
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [2] The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit
    Temgoua, Remi Yvant
    Weth, Tobias
    [J]. POTENTIAL ANALYSIS, 2024, 60 (01) : 285 - 306
  • [3] The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit
    Remi Yvant Temgoua
    Tobias Weth
    [J]. Potential Analysis, 2024, 60 : 285 - 306
  • [4] Refined eigenvalue bounds on the Dirichlet fractional Laplacian
    Yolcu, Selma Yildirim
    Yolcu, Turkay
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [5] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [6] Semilinear Dirichlet problem for the fractional Laplacian
    Bogdan, Krzysztof
    Jarohs, Sven
    Kania, Edyta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
  • [7] Eigenvalue problem for fractional Kirchhoff Laplacian
    Tyagi, J.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 195 - 203
  • [8] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 325 - 345
  • [9] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    [J]. Mathematische Zeitschrift, 2022, 300 : 325 - 345
  • [10] THE SEMIGROUP GENERATED BY THE DIRICHLET LAPLACIAN OF FRACTIONAL ORDER
    Iwabuchi, Tsukasa
    [J]. ANALYSIS & PDE, 2018, 11 (03): : 683 - 703