Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian

被引:11
|
作者
Feulefack, Pierre Aime [1 ,2 ]
Jarohs, Sven [1 ]
Weth, Tobias [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60629 Frankfurt, Germany
[2] African Inst Math Sci Senegal AIMS Senegal, KM 2,Route Joal,BP 1418, Mbour, Senegal
关键词
Fractional Laplacian; Small order expansion; Logarithmic Laplacian; Uniform regularity; NONLOCAL OPERATORS; POTENTIAL-THEORY; REGULARITY;
D O I
10.1007/s00041-022-09908-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian (-Delta)(s) in bounded open Lipschitz sets in the small order limit s -> 0(+). While it is easy to see that all eigenvalues converge to 1 as s -> 0(+), we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log vertical bar xi vertical bar. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L-2-normalized Dirichlet eigenfunctions of (-Delta)(s) corresponding to the k-th eigenvalue are uniformly bounded and converge to the set of L-2-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
    Pierre Aime Feulefack
    Sven Jarohs
    Tobias Weth
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [2] The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit
    Temgoua, Remi Yvant
    Weth, Tobias
    [J]. POTENTIAL ANALYSIS, 2024, 60 (01) : 285 - 306
  • [3] The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit
    Remi Yvant Temgoua
    Tobias Weth
    [J]. Potential Analysis, 2024, 60 : 285 - 306
  • [4] Refined eigenvalue bounds on the Dirichlet fractional Laplacian
    Yolcu, Selma Yildirim
    Yolcu, Turkay
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [5] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [6] Semilinear Dirichlet problem for the fractional Laplacian
    Bogdan, Krzysztof
    Jarohs, Sven
    Kania, Edyta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
  • [7] Eigenvalue problem for fractional Kirchhoff Laplacian
    Tyagi, J.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 195 - 203
  • [8] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 325 - 345
  • [9] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    [J]. Mathematische Zeitschrift, 2022, 300 : 325 - 345
  • [10] THE SEMIGROUP GENERATED BY THE DIRICHLET LAPLACIAN OF FRACTIONAL ORDER
    Iwabuchi, Tsukasa
    [J]. ANALYSIS & PDE, 2018, 11 (03): : 683 - 703