On a planar Choquard equation involving exponential critical growth

被引:0
|
作者
J. Carvalho
E. Medeiros
B. Ribeiro
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
关键词
Choquard equation; Hardy-Littlewood-Sobolev inequality; Weighted Sobolev embedding; Trudinger-Moser inequality; Riesz Potential; 35J66; 35J20; 35J60; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a class of planar Choquard equation with Riesz potential of logarithm type and the potential V and the weights K, Q decaying to zero at infinity. We prove a weighted Sobolev embedding and a weighted Trudinger–Moser type inequality using a convenient decomposition. These results allow us to address, via variational methods, the existence of solutions to the Choquard equation when the nonlinearities possess critical exponential growth in the Trudinger–Moser sense.
引用
收藏
相关论文
共 50 条
  • [41] Ground state solutions for planar periodic Kirchhoff type equation with critical exponential growth
    Wei, Jiuyang
    Tang, Xianhua
    Zhang, Limin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9322 - 9340
  • [42] Analysis of a low linear perturbed Choquard equation with critical growth
    Zhang, Xinrui
    Meng, Yuxi
    He, Xiaoming
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [43] On a planar non-autonomous Schrödinger–Poisson system involving exponential critical growth
    F. S. Albuquerque
    J. L. Carvalho
    G. M. Figueiredo
    E. Medeiros
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [44] On a planar non-autonomous Schrodinger-Poisson system involving exponential critical growth
    Albuquerque, F. S.
    Carvalho, J. L.
    Figueiredo, G. M.
    Medeiros, E.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [45] Planar Schrodinger equations with critical exponential growth
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    Wen, Lixi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [46] Indefinite Planar Problem with Exponential Critical Growth
    Furtado, Marcelo F.
    Sousa, Karla C., V
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (02) : 361 - 370
  • [47] Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent
    Yanbin Sang
    Sihua Liang
    The Journal of Geometric Analysis, 2022, 32
  • [48] Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Zifei Shen
    Fashun Gao
    Minbo Yang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [49] ON GROUND STATE OF FRACTIONAL P-KIRCHHOFF EQUATION INVOLVING SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH
    Pei, Ruichang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2653 - 2672
  • [50] On some semilinear elliptic equation involving exponential growth
    Aouaoui, Sami
    APPLIED MATHEMATICS LETTERS, 2014, 33 : 23 - 28