Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function

被引:0
|
作者
E. Viera-Martin
J. F. Gómez-Aguilar
J. E. Solís-Pérez
J. A. Hernández-Pérez
V. H. Olivares-Peregrino
机构
[1] Tecnológico Nacional de México/CENIDET,
[2] CONACyT-Tecnológico Nacional de México/CENIDET,undefined
[3] Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp-IICBA),undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper analyzes non-integer Hopfield neural network dynamics introducing the hyperbolic tangent transfer function generalized by the Mittag-Leffler function and the M-truncated derivative with constant and variable order. The novel neural network’s (ANN) behaviors are studied through their dynamics depicted in phase portraits and the 0-1 test to determine where the ANN displays strong chaotic behaviors. According to the numerical results, the generalized Hopfield (M-HNTF) reveals weak chaotic dynamics with constant values under 0.99 and regular behaviors lower than 0.8. Considering the variable order, the chaotic behaviors depend on the decay rate of the time-varying function. Due to this, we got systems with weak chaotic dynamics until strong chaotic dynamics. Next, we used two scenarios to anti-synchronize a system master and a slave system. The first considering a dynamic, chaotic system and a regular system, the second: two M-HNTF with variable order. Numerical results illustrate those mentioned above, showing the control aim. Getting new chaotic dynamics from non-integer systems with variable order is essential to develop protocols to offer secure communications, new random number generators, image encrypts schemes, to name a few.
引用
收藏
页码:1801 / 1814
页数:13
相关论文
共 24 条