Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function

被引:0
|
作者
E. Viera-Martin
J. F. Gómez-Aguilar
J. E. Solís-Pérez
J. A. Hernández-Pérez
V. H. Olivares-Peregrino
机构
[1] Tecnológico Nacional de México/CENIDET,
[2] CONACyT-Tecnológico Nacional de México/CENIDET,undefined
[3] Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp-IICBA),undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper analyzes non-integer Hopfield neural network dynamics introducing the hyperbolic tangent transfer function generalized by the Mittag-Leffler function and the M-truncated derivative with constant and variable order. The novel neural network’s (ANN) behaviors are studied through their dynamics depicted in phase portraits and the 0-1 test to determine where the ANN displays strong chaotic behaviors. According to the numerical results, the generalized Hopfield (M-HNTF) reveals weak chaotic dynamics with constant values under 0.99 and regular behaviors lower than 0.8. Considering the variable order, the chaotic behaviors depend on the decay rate of the time-varying function. Due to this, we got systems with weak chaotic dynamics until strong chaotic dynamics. Next, we used two scenarios to anti-synchronize a system master and a slave system. The first considering a dynamic, chaotic system and a regular system, the second: two M-HNTF with variable order. Numerical results illustrate those mentioned above, showing the control aim. Getting new chaotic dynamics from non-integer systems with variable order is essential to develop protocols to offer secure communications, new random number generators, image encrypts schemes, to name a few.
引用
收藏
页码:1801 / 1814
页数:13
相关论文
共 24 条
  • [1] Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function
    Viera-Martin, E.
    Gomez-Aguilar, J. F.
    Solis-Perez, J. E.
    Hernandez-Perez, J. A.
    Olivares-Peregrino, V. H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (10): : 1801 - 1814
  • [2] Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
    Mathias, Amanda C.
    Rech, Paulo C.
    NEURAL NETWORKS, 2012, 34 : 42 - 45
  • [3] Hyperbolic Hopfield neural networks with directional multistate activation function
    Kobayashi, Masaki
    NEUROCOMPUTING, 2018, 275 : 2217 - 2226
  • [4] Dynamics Research of the Hopfield Neural Network Based on Hyperbolic Tangent Memristor with Absolute Value
    Gao, Huiyan
    Xu, Hongmei
    Micromachines, 2025, 16 (02)
  • [5] The construction and approximation of feedforward neural network with hyperbolic tangent function
    CHEN Zhixiang
    CAO Feilong
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2015, 30 (02) : 151 - 162
  • [6] The construction and approximation of feedforward neural network with hyperbolic tangent function
    Chen Zhi-xiang
    Cao Fei-long
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (02) : 151 - 162
  • [7] The construction and approximation of feedforward neural network with hyperbolic tangent function
    CHEN Zhi-xiang
    CAO Fei-long
    Applied Mathematics:A Journal of Chinese Universities, 2015, (02) : 151 - 162
  • [8] The construction and approximation of feedforward neural network with hyperbolic tangent function
    Zhi-xiang Chen
    Fei-long Cao
    Applied Mathematics-A Journal of Chinese Universities, 2015, 30 : 151 - 162
  • [9] Artificial Neural Network with Hyperbolic Tangent Activation Function to Improve the Accuracy of COCOMO II Model
    Alshalif, Sarah Abdulkarem
    Ibrahim, Noraini
    Herawan, Tutut
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 81 - 90
  • [10] Anti-synchronization transmission of the laser signal using uncertain neural network
    Lu, Ling
    Li, Chengren
    Wang, Zhouyang
    Tian, Jing
    Gu, Jiajia
    OPTIK, 2015, 126 (22): : 3385 - 3389