A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems

被引:0
|
作者
Lulu Cheng
Xinzhen Zhang
Guyan Ni
机构
[1] Tianjin University,School of Mathematics
[2] National University of Defense Technology,Department of Mathematics
来源
关键词
Second-order cone; Tensor eigenvalue complementarity; Semidefinite relaxation; 15A18; 15A69; 90C22; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses second-order cone tensor eigenvalue complementarity problem. We reformulate second-order cone tensor eigenvalue complementarity problem as two constrained polynomial optimizations. For these two reformulated optimizations, Lasserre-type semidefinite relaxation methods are proposed to compute all second-order cone tensor complementarity eigenpairs. The proposed algorithms terminate when there are finitely many second-order cone complementarity eigenvalues. Numerical examples are reported to show the efficiency of the proposed algorithms.
引用
收藏
页码:715 / 732
页数:17
相关论文
共 50 条
  • [31] A regularization smoothing method for second-order cone complementarity problem
    Zhang, Xiangsong
    Liu, Sanyang
    Liu, Zhenhua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 731 - 740
  • [32] A smoothing Newton method for the second-order cone complementarity problem
    Jingyong Tang
    Guoping He
    Li Dong
    Liang Fang
    Jinchuan Zhou
    Applications of Mathematics, 2013, 58 : 223 - 247
  • [33] A smoothing Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 223 - 247
  • [34] The GUS-property of second-order cone linear complementarity problems
    Yang, Wei Hong
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 295 - 317
  • [35] The GUS-property of second-order cone linear complementarity problems
    Wei Hong Yang
    Xiaoming Yuan
    Mathematical Programming, 2013, 141 : 295 - 317
  • [36] Smoothing penalty approach for solving second-order cone complementarity problems
    Nguyen, Chieu Thanh
    Alcantara, Jan Harold
    Hao, Zijun
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 39 - 58
  • [37] On representing the positive semidefinite cone using the second-order cone
    Fawzi, Hamza
    MATHEMATICAL PROGRAMMING, 2019, 175 (1-2) : 109 - 118
  • [38] A second-order perturbation method for fuzzy eigenvalue problems
    Guo, Mengwu
    Zhong, Hongzhi
    You, Kuan
    ENGINEERING COMPUTATIONS, 2016, 33 (02) : 306 - 327
  • [39] On representing the positive semidefinite cone using the second-order cone
    Hamza Fawzi
    Mathematical Programming, 2019, 175 : 109 - 118
  • [40] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Narushima, Yasushi
    Sagara, Nobuko
    Ogasawara, Hideho
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) : 79 - 101