Global Convergence to Compressible Full Navier–Stokes Equations by Approximation with Oldroyd-Type Constitutive Laws

被引:0
|
作者
Yue-Jun Peng
Liang Zhao
机构
[1] Université Clermont Auvergne,Mathematical Modelling and Data Analytics Center
[2] CNRS,undefined
[3] Laboratoire de Mathématiques Blaise Pascal,undefined
[4] Oxford Suzhou Centre for Advanced Research,undefined
关键词
Full Navier–Stokes equations; Non-Newtonian fluid; Relaxed Euler systems; Oldroyd derivative; Global convergence; 35B25; 35L60; 35Q30; 76A05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider smooth solutions to a relaxed Euler system with Oldroyd-type constitutive laws. This system is derived from the one-dimensional compressible full Navier-Stokes equations for a Newtonian fluid by using the Cattaneo–Christov model and the Oldroyd-B model. In a neighborhood of equilibrium states, we construct an explicit symmetrizer and show that the system is symmetrizable hyperbolic with partial dissipation. Moreover, by establishing uniform estimates with respect to the relaxation times, we prove the uniform global existence of smooth solutions and the global-in-time convergence of the system towards the full Navier–Stokes equations.
引用
收藏
相关论文
共 50 条
  • [1] Global Convergence to Compressible Full Navier-Stokes Equations by Approximation with Oldroyd-Type Constitutive Laws
    Peng, Yue-Jun
    Zhao, Liang
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [2] Global convergence rates from relaxed Euler equations to Navier-Stokes equations with Oldroyd-type constitutive laws
    Peng, Yue-Jun
    Zhao, Liang
    [J]. NONLINEARITY, 2024, 37 (09)
  • [3] Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations
    Zhang, Zhifei
    Zi, Ruizhao
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (02): : 457 - 488
  • [4] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    JianWei Yang
    Shu Wang
    [J]. Science China Mathematics, 2014, 57 : 2153 - 2162
  • [5] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141
  • [6] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    YANG JianWei
    WANG Shu
    [J]. Science China Mathematics, 2014, 57 (10) : 2153 - 2162
  • [7] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    [J]. Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [8] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    Yang JianWei
    Wang Shu
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2153 - 2162
  • [9] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [10] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    [J]. Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148