Approximate Real Symmetric Tensor Rank

被引:0
|
作者
Ergür A.A. [1 ]
Rebollo Bueno J. [3 ]
Valettas P. [2 ]
机构
[1] Mathematics and Computer Science, The University of Texas at San Antonio, San Antonio, TX
[2] Mathematics & Electrical Enginering and Computer Science, University of Missouri, Columbia, MO
[3] Mathematics, The University of Texas at San Antonio, San Antonio, TX
关键词
Approximate Sparsification; Energy Increment Method; Maurey’s Empricial Method; Polynomial Optimization; Symmetric Tensor Rank;
D O I
10.1007/s40598-023-00235-4
中图分类号
学科分类号
摘要
We investigate the effect of an ε -room of perturbation tolerance on symmetric tensor decomposition. To be more precise, suppose a real symmetric d-tensor f, a norm ∥ · ∥ on the space of symmetric d-tensors, and ε> 0 are given. What is the smallest symmetric tensor rank in the ε -neighborhood of f? In other words, what is the symmetric tensor rank of f after a clever ε -perturbation? We prove two theorems and develop three corresponding algorithms that give constructive upper bounds for this question. With expository goals in mind, we present probabilistic and convex geometric ideas behind our results, reproduce some known results, and point out open problems. © 2023, Institute for Mathematical Sciences (IMS), Stony Brook University, NY.
引用
收藏
页码:455 / 480
页数:25
相关论文
共 50 条
  • [41] The 1/N Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models in Rank Three
    Benedetti, Dario
    Carrozza, Sylvain
    Gurau, Razvan
    Kolanowski, Maciej
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 55 - 97
  • [42] Tensor surgery and tensor rank
    Christandl, Matthias
    Zuiddam, Jeroen
    COMPUTATIONAL COMPLEXITY, 2019, 28 (01) : 27 - 56
  • [43] Tensor surgery and tensor rank
    Matthias Christandl
    Jeroen Zuiddam
    computational complexity, 2019, 28 : 27 - 56
  • [44] STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK OF NONNEGATIVE REAL MATRICES
    Beasley, LeRoy B.
    Hernandez Encinas, Luis
    Song, Seok-Zun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1503 - 1514
  • [45] On the rank of a real skew symmetric matrix described by an oriented graph
    Gong, Shi-Cai
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10): : 1934 - 1946
  • [46] COMPLETE REAL HYPERSURFACES IN COMPACT RANK ONE SYMMETRIC SPACES
    Hamada, Tatsuyoshi
    Shiohama, Katsuhiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3905 - 3910
  • [47] LOW-RANK APPROXIMATE INVERSE FOR PRECONDITIONING TENSOR-STRUCTURED LINEAR SYSTEMS
    Giraldi, L.
    Nouy, A.
    Legrain, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1850 - A1870
  • [48] An Evaluation of Glyph Perception for Real Symmetric Traceless Tensor Properties
    Jankun-Kelly, T. J.
    Lanka, Y. S.
    Swan, J. E., II
    COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 1133 - 1142
  • [49] Low Rank Tensor Approximate Discrete Simulation Method of Smart Meter Reliability Prediction
    He Yong
    Yang Zhou
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 360 - 366
  • [50] REAL RANK OF TENSOR-PRODUCTS OF C-ASTERISK-ALGEBRAS
    KODAKA, K
    OSAKA, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) : 2213 - 2215