Differentiating pheochromocytoma from lipid-poor adrenocortical adenoma by CT texture analysis: feasibility study

被引:0
|
作者
Gu-Mu-Yang Zhang
Bing Shi
Hao Sun
Zheng-Yu Jin
Hua-Dan Xue
机构
[1] Chinese Academy of Medical Sciences,Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College
来源
Abdominal Radiology | 2017年 / 42卷
关键词
Computed tomography; Texture analysis; Pheochromocytoma; Adrenocortical adenoma; Feasibility;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2305 / 2313
页数:8
相关论文
共 50 条
  • [41] Can Radiomics Provide Additional Diagnostic Value for Identifying Adrenal Lipid-Poor Adenomas From Non-Adenomas on Unenhanced CT?
    Zhang, Binhao
    Zhang, Huangqi
    Li, Xin
    Jin, Shengze
    Yang, Jiawen
    Pan, Wenting
    Dong, Xue
    Chen, Jin
    Ji, Wenbin
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [42] Diagnostic performance of hepatic CT and chemical-shift MRI to discriminate lipid-poor adrenal adenomas from hepatocellular carcinoma metastases
    Nagayama, Yasunori
    Hayashi, Hidetaka
    Taguchi, Narumi
    Yoshida, Ryuya
    Harai, Ryota
    Kidoh, Masafumi
    Oda, Seitaro
    Nakaura, Takeshi
    Hirai, Toshinori
    ABDOMINAL RADIOLOGY, 2024, 49 (05) : 1626 - 1637
  • [43] MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study
    Kirsi Holli-Helenius
    Annukka Salminen
    Irina Rinta-Kiikka
    Ilkka Koskivuo
    Nina Brück
    Pia Boström
    Riitta Parkkola
    BMC Medical Imaging, 17
  • [44] MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study
    Holli-Helenius, Kirsi
    Salminen, Annukka
    Rinta-Kiikka, Irina
    Koskivuo, Ilkka
    Bruck, Nina
    Bostrom, Pia
    Parkkola, Riitta
    BMC MEDICAL IMAGING, 2017, 17
  • [45] Can Relative Enhancement Ratio of Portal Venous Phase to Unenhanced CT Be Used to Differentiate Lipid-Poor Adrenal Adenomas from Adrenal Hyperplasia?
    Ren, Shuai
    Daniels, Marcus J.
    Wang, Zhongqiu
    RADIOLOGY, 2022, 303 (03) : E37 - E37
  • [46] Review of Value of CT Texture Analysis and Machine Learning in Differentiating Fat-Poor Renal Angiomyolipoma fromRenal Cell Carcinoma
    Zhang, Yuhan
    Li, Xu
    Lv, Yang
    Gu, Xinquan
    TOMOGRAPHY, 2020, 6 (04) : 325 - 332
  • [47] Whole-lesion CT histogram analysis as an advanced technique in the portal venous phase: differentiating lipid poor adrenal adenomas from pheochromocytomas
    Guendogdu, Elif
    Asilioglu, Bugra Kaan
    Yazici, Celal
    ABDOMINAL RADIOLOGY, 2025, 50 (03) : 1219 - 1227
  • [48] Value of Texture Analysis on Gadoxetic Acid-Enhanced MRI for Differentiating Hepatocellular Adenoma From Focal Nodular Hyperplasia
    Cannella, Roberto
    Rangaswamy, Balasubramanya
    Minervini, Marta, I
    Borhani, Amir A.
    Tsung, Allan
    Furlan, Alessandro
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (03) : 538 - 546
  • [49] Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study
    Verma, Rajeev Kumar
    Wiest, Roland
    Locher, Cacilia
    Heldner, Mirjam Rachel
    Schucht, Phillip
    Raabe, Andreas
    Gralla, Jan
    Kamm, Christian Philipp
    Slotboom, Johannes
    Kellner-Weldon, Frauke
    MEDICAL PHYSICS, 2017, 44 (08) : 4000 - 4008
  • [50] CT texture analysis for differentiating between peritoneal carcinomatosis and peritoneal tuberculosis: a cross-sectional study
    Awais, Muhammad
    Khan, Noman
    Khan, Ayimen Khalid
    Rehman, Abdul
    ABDOMINAL RADIOLOGY, 2024, 49 (03) : 857 - 867