Self-adaptive salp swarm algorithm for optimization problems

被引:0
|
作者
Sofian Kassaymeh
Salwani Abdullah
Mohammed Azmi Al-Betar
Mohammed Alweshah
Mohamad Al-Laham
Zalinda Othman
机构
[1] Aqaba University of Technology,Software Engineering Dept., Faculty of Information Technology
[2] Universiti Kebangsaan Malaysia,Data Mining and Optimization Research Group, Center for Artificial Intelligence Technology
[3] Ajman University,Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology
[4] Al-Balqa Applied University,Dept. of Information Technology, Al
[5] Al-Balqa Applied University,Huson University College
[6] Aqaba University of Technology,Dept. of Computer Science, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology
[7] Al-Balqa Applied University,Artificial Intelligence Dept., Faculty of Information Technology
来源
Soft Computing | 2022年 / 26卷
关键词
Salp swarm algorithm; Initial population diversity; Self-adaptive parameters tuning; Swarm algorithms; Optimization; Metaheuristic;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an enhanced version of the salp swarm algorithm (SSA) for global optimization problems was developed. Two improvements have been proposed: (i) Diversification of the SSA population referred as SSAstd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{std}$$\end{document}, (ii) SSA parameters are tuned using a self-adaptive technique-based genetic algorithm (GA) referred as SSAGA-tuner\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{GA-tuner}$$\end{document}. The novelty of developing a self-adaptive SSA is to enhance its performance through balancing search exploration and exploitation. The enhanced SSA versions are evaluated using twelve benchmark functions. The diversified population of SSAstd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{std}$$\end{document} enhances convergence behavior, and self-adaptive parameter tuning of SSAGA-tuner\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{GA-tuner}$$\end{document} improves the convergence behavior as well, thus improving performance. The comparative evaluation against nine well-established methods shows the superiority of the proposed SSA versions. The enhancement amount in accuracy was between 2.97 and 99% among all versions of algorithm. In a nutshell, the proposed SSA version shows a powerful enhancement that can be applied to a wide range of optimization problems.
引用
收藏
页码:9349 / 9368
页数:19
相关论文
共 50 条
  • [21] Binary Self-Adaptive Salp Swarm Optimization-Based Dynamic Load Balancing in Cloud Computing
    Parida, Bivasa Ranjan
    Rath, Amiya Kumar
    Mohapatra, Hitesh
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2022, 17 (01) : 1 - 25
  • [22] A Self-adaptive Differential Evolution Algorithm for Solving Optimization Problems
    Farda, Irfan
    Thammano, Arit
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGY (IC2IT 2022), 2022, 453 : 68 - 76
  • [23] A self-adaptive differential evolution algorithm for continuous optimization problems
    Jitkongchuen D.
    Thammano A.
    [J]. Artificial Life and Robotics, 2014, 19 (02) : 201 - 208
  • [24] A Self-adaptive Immune PSO Algorithm for Constrained Optimization Problems
    Ouyang, Aijia
    Zhou, Guo
    Zhou, Yongquan
    [J]. COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2010, 107 : 208 - +
  • [25] An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems
    Elsayed, Saber M.
    Sarker, Ruhul A.
    Essam, Daryl L.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (01) : 89 - 99
  • [26] Modified self-adaptive particle swarm optimization
    Li, Jian
    Wang, Cheng
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36 (03): : 118 - 121
  • [27] A Self-Adaptive Integrated Particle Swarm Optimization
    Liu, Yanju
    Dai, Tao
    Song, Jianhui
    Hu, Yang
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 707 - 711
  • [28] Real-Time Implementation of Self-Adaptive Salp Swarm Optimization-Based Microgrid Droop Control
    Ebrahim, M. A.
    Fattah, Reham Mohamed Abdel
    Saied, Ebtisam Mostafa Mohamed
    Maksoud, Samir Mohamed Abdel
    El Khashab, Hisham
    [J]. IEEE ACCESS, 2020, 8 : 185738 - 185751
  • [29] A Simple Particle Swarm Optimization Algorithm Based on Self-Adaptive Neighborhood Explored
    Gou Jin
    Wu Zhong-Yong
    Chen Hong-Guang
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (03): : 865 - 870
  • [30] Self-adaptive mutation differential evolution algorithm based on particle swarm optimization
    Wang, Shihao
    Li, Yuzhen
    Yang, Hongyu
    [J]. APPLIED SOFT COMPUTING, 2019, 81