Self-adaptive salp swarm algorithm for optimization problems

被引:0
|
作者
Sofian Kassaymeh
Salwani Abdullah
Mohammed Azmi Al-Betar
Mohammed Alweshah
Mohamad Al-Laham
Zalinda Othman
机构
[1] Aqaba University of Technology,Software Engineering Dept., Faculty of Information Technology
[2] Universiti Kebangsaan Malaysia,Data Mining and Optimization Research Group, Center for Artificial Intelligence Technology
[3] Ajman University,Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology
[4] Al-Balqa Applied University,Dept. of Information Technology, Al
[5] Al-Balqa Applied University,Huson University College
[6] Aqaba University of Technology,Dept. of Computer Science, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology
[7] Al-Balqa Applied University,Artificial Intelligence Dept., Faculty of Information Technology
来源
Soft Computing | 2022年 / 26卷
关键词
Salp swarm algorithm; Initial population diversity; Self-adaptive parameters tuning; Swarm algorithms; Optimization; Metaheuristic;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an enhanced version of the salp swarm algorithm (SSA) for global optimization problems was developed. Two improvements have been proposed: (i) Diversification of the SSA population referred as SSAstd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{std}$$\end{document}, (ii) SSA parameters are tuned using a self-adaptive technique-based genetic algorithm (GA) referred as SSAGA-tuner\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{GA-tuner}$$\end{document}. The novelty of developing a self-adaptive SSA is to enhance its performance through balancing search exploration and exploitation. The enhanced SSA versions are evaluated using twelve benchmark functions. The diversified population of SSAstd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{std}$$\end{document} enhances convergence behavior, and self-adaptive parameter tuning of SSAGA-tuner\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{GA-tuner}$$\end{document} improves the convergence behavior as well, thus improving performance. The comparative evaluation against nine well-established methods shows the superiority of the proposed SSA versions. The enhancement amount in accuracy was between 2.97 and 99% among all versions of algorithm. In a nutshell, the proposed SSA version shows a powerful enhancement that can be applied to a wide range of optimization problems.
引用
收藏
页码:9349 / 9368
页数:19
相关论文
共 50 条
  • [1] Self-adaptive salp swarm algorithm for optimization problems
    Kassaymeh, Sofian
    Abdullah, Salwani
    Al-Betar, Mohammed Azmi
    Alweshah, Mohammed
    Al-Laham, Mohamad
    Othman, Zalinda
    [J]. SOFT COMPUTING, 2022, 26 (18) : 9349 - 9368
  • [2] Self-adaptive salp swarm algorithm for engineering optimization problems
    Salgotra, Rohit
    Singh, Urvinder
    Singh, Supreet
    Singh, Gurdeep
    Mittal, Nitin
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 89 : 188 - 207
  • [3] Self-adaptive Ejector Particle Swarm Optimization Algorithm
    Zhu, Jingwei
    Fang, Husheng
    Shao, Faming
    Jiang, Chengming
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (02): : 108 - 116
  • [4] Improved Self-Adaptive Glowworm Swarm Optimization Algorithm
    Chen Rongzheng
    [J]. COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 798 - 801
  • [5] Orthogonal pinhole-imaging-based learning salp swarm algorithm with self-adaptive structure for global optimization
    Wang, Zongshan
    Ding, Hongwei
    Yang, Jingjing
    Hou, Peng
    Dhiman, Gaurav
    Wang, Jie
    Yang, Zhijun
    Li, Aishan
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [6] Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures
    Khajehzadeh, Mohammad
    Iraji, Amin
    Majdi, Ali
    Keawsawasvong, Suraparb
    Nehdi, Moncef L.
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [7] A Self-adaptive Mutation-Particle Swarm Optimization Algorithm
    Li, Zhengwei
    Tan, Guojun
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2008, : 30 - +
  • [8] A self-adaptive virus optimization algorithm for continuous optimization problems
    Liang, Yun-Chia
    Cuevas Juarez, Josue Rodolfo
    [J]. SOFT COMPUTING, 2020, 24 (17) : 13147 - 13166
  • [9] A self-adaptive virus optimization algorithm for continuous optimization problems
    Yun-Chia Liang
    Josue Rodolfo Cuevas Juarez
    [J]. Soft Computing, 2020, 24 : 13147 - 13166
  • [10] Improved Salp Swarm Optimization Algorithm for Engineering Problems
    Nasri, Dallel
    Mokeddem, Diab
    [J]. ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 : 249 - 259