On the geometry of para-Kählerian Cartan spaces

被引:0
|
作者
E. Mazėtis
机构
[1] Vilnius Pedagogical University,
来源
Lithuanian Mathematical Journal | 2007年 / 47卷
关键词
Cartan spaces; linear and affine connections; metric affine connections; almost product structures; para-Kählerian;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Cartan Spaces with almost product structure. We prove that, in such spaces, there exist para-Kählerian structures and establish criteria for semisymmetric and Ricci-semisymmetric spaces.
引用
收藏
页码:57 / 66
页数:9
相关论文
共 50 条
  • [31] 3-dimensional Seiberg-Witten invariants and non-Kählerian geometry
    Christian Okonek
    Andrei Teleman
    Mathematische Annalen, 1998, 312 : 261 - 288
  • [32] Generalization of Cartan's Lemma for Indefinite K-Spaces
    Kumar, R.
    Nagaich, R. K.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2008, 29 (01) : 21 - 23
  • [33] On Involutes of Order k of a Null Cartan Curve in Minkowski Spaces
    Hanif, Muhammad
    Hou, Zhong Hua
    Nesovic, Emilija
    FILOMAT, 2019, 33 (08) : 2295 - 2305
  • [34] Generalization of Cartan’s Lemma for indefinite K-spaces
    R. Kumar
    R. K. Nagaich
    Lobachevskii Journal of Mathematics, 2008, 29 (1) : 21 - 23
  • [35] Bochner identities for Kählerian gradients
    Yasushi Homma
    Mathematische Annalen, 2005, 333 : 181 - 211
  • [36] Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
    Gil Bor
    Omid Makhmali
    Paweł Nurowski
    Geometriae Dedicata, 2022, 216
  • [37] Cones and Cartan geometry
    Di Scala, Antonio J.
    Olmos, Carlos E.
    Vittone, Francisco
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 78
  • [38] GEOMETRY OF HOMOGENEOUS K-SPACES
    KIRICHENKO, VF
    MATHEMATICAL NOTES, 1981, 30 (3-4) : 779 - 785
  • [39] Kähler geometry of Douady spaces
    Reynir Axelsson
    Georg Schumacher
    manuscripta mathematica, 2006, 121 : 277 - 291
  • [40] Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds
    Mykhaylo Chursin
    Lars Schäfer
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 2011, 41 : 111 - 125