Twins of k-free numbers in arithmetic progressions

被引:0
|
作者
Zaizhao Meng
机构
[1] Peking University,School of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2011年 / 130卷
关键词
-free number; Hurwitz zeta function; Hardy–Littlewood method; 11N25; 11N69;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new upper bound of Barban–Davenport–Halberstam type for twins of k-free numbers in arithmetic progressions.
引用
收藏
页码:223 / 253
页数:30
相关论文
共 50 条
  • [21] On the exponential sum over k-free numbers
    Brudern, J
    Granville, A
    Perelli, A
    Vaughan, RC
    Wooley, TD
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1738): : 739 - 761
  • [22] Some new results on k-free numbers
    Meng, Zaizhao
    JOURNAL OF NUMBER THEORY, 2006, 121 (01) : 45 - 66
  • [23] The distribution of k-free numbers and the derivative of the Riemann
    Meng, Xianchang
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (02) : 293 - 317
  • [24] On k-Free Numbers Over Beatty Sequences
    Zhang, Wei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 839 - 847
  • [25] On k-free numbers over Beatty sequences
    Wei Zhang
    Czechoslovak Mathematical Journal, 2023, 73 : 839 - 847
  • [26] MOMENTS OF GAPS BETWEEN K-FREE NUMBERS
    GRAHAM, SW
    JOURNAL OF NUMBER THEORY, 1993, 44 (01) : 105 - 117
  • [27] k-FREE NUMBERS AND INTEGER PARTS OF αp
    Cam Celik, Sermin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 237 - 251
  • [28] K-FREE NUMBERS AS THE SUM OF 2 SQUARES
    RECKNAGEL, W
    ARCHIV DER MATHEMATIK, 1989, 52 (03) : 233 - 236
  • [29] Starting with gaps between k-free numbers
    Filaseta, M.
    Graham, S.
    Trifonov, O.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) : 1411 - 1435
  • [30] Palindromic numbers in arithmetic progressions
    Harminc, M
    Sotak, R
    FIBONACCI QUARTERLY, 1998, 36 (03): : 259 - 262