Existence, uniqueness and stability of an inverse problem for two-dimensional convective Brinkman–Forchheimer equations with the integral overdetermination

被引:0
|
作者
Pardeep Kumar
Manil T. Mohan
机构
[1] Indian Institute of Technology Roorkee-IIT,Department of Mathematics
关键词
Convective Brinkman–Forchheimer equations; Inverse source problem; Integral overdetermination condition; Contraction mapping theorem; Well-posedness; 35R30; 35Q35; 35Q30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study an inverse problem for the following convective Brinkman–Forchheimer (CBF) equations: ut-μΔu+(u·∇)u+αu+β|u|r-1u+∇p=F:=fg,∇·u=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{u}_t-\mu \Delta \varvec{u}+(\varvec{u}\cdot \nabla )\varvec{u}+\alpha \varvec{u} +\beta |\varvec{u}|^{r-1}\varvec{u}+\nabla p=\varvec{F}:=f \varvec{g}, \ \ \ \nabla \cdot \varvec{u}=0, \end{aligned}$$\end{document}in a bounded domain Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^2$$\end{document} with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega$$\end{document}, where α,β,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,\mu >0$$\end{document} and r∈[1,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in [1,3]$$\end{document}. The investigated inverse problem consists of reconstructing the vector-valued velocity function u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}$$\end{document}, the pressure field p and the scalar function f. For the divergence free initial data u0∈L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}_0 \in \mathbb {L}^2(\Omega )$$\end{document}, we prove the existence of a solution to the inverse problem for two-dimensional CBF equations with the integral overdetermination condition, by showing the existence of a unique fixed point for an equivalent operator equation (using an extension of the contraction mapping theorem). Moreover, we establish the uniqueness and Lipschitz stability results of the solution to the inverse problem for 2D CBF equations with r∈[1,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in [1,3]$$\end{document}.
引用
收藏
相关论文
共 50 条