Ground States Solutions for a Modified Fractional Schrödinger Equation with a Generalized Choquard Nonlinearity

被引:0
|
作者
I. Dehsari
N. Nyamoradi
机构
[1] Razi University,
关键词
Choquard equation; fractional Schrödinger equation; fractional laplacian; ground states solutions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:131 / 144
页数:13
相关论文
共 50 条
  • [31] On the exact solutions of optical perturbed fractional Schrödinger equation
    Ozkan, Erdogan Mehmet
    Yildirim, Ozgur
    Ozkan, Ayten
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [32] Infinitely many weak solutions for a fractional Schrödinger equation
    Wei Dong
    Jiafa Xu
    Zhongli Wei
    Boundary Value Problems, 2014
  • [33] Sign-changing Solutions for a Schrödinger Equation with Saturable Nonlinearity
    L. A. Maia
    R. Ruviaro
    Milan Journal of Mathematics, 2011, 79 : 259 - 271
  • [34] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Shuai Mo
    Lixia Wang
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [35] Construct new type solutions for the fractional Schrödinger equation
    Yuan Lin
    Weiming Liu
    Boundary Value Problems, 2021
  • [36] Energy solutions and concentration problem of fractional Schrödinger equation
    Peiluan Li
    Yuan Yuan
    Boundary Value Problems, 2018
  • [37] Exact solutions of the fractional resonant nonlinear Schrödinger equation
    Yongming Xu
    Yuqiang Feng
    Jun Jiang
    Optical and Quantum Electronics, 2023, 55
  • [38] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Mo, Shuai
    Wang, Lixia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [39] MULTIPLE SOLUTIONS FOR THE SCHR?DINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY
    蒋永生
    魏娜
    吴永洪
    ActaMathematicaScientia, 2021, 41 (03) : 703 - 711
  • [40] Infinitely many solutions for a nonlinear Schrödinger equation with general nonlinearity
    Yohei Sato
    Masataka Shibata
    Calculus of Variations and Partial Differential Equations, 2018, 57